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Abstract 
Motivation: Genome-wide association studies (GWAS) have enabled large-scale analysis of the role of genetic variants in human disease. 
Despite impressive methodological advances, subsequent clinical interpretation and application remains challenging when GWAS 
suffer from a lack of statistical power. In recent years, however, the use of information diffusion algorithms with molecular networks 
has led to fruitful insights on disease genes. Results: We present an overview of the design choices and pitfalls that prove crucial in 
the application of network propagation methods to GWAS summary statistics. We highlight general trends from the literature, and 
present benchmark experiments to expand on these insights selecting as case study three diseases and five molecular networks. We 
verify that the use of gene-level scores based on GWAS P-values offers advantages over the selection of a set of ‘seed’ disease genes not 
weighted by the associated P-values if the GWAS summary statistics are of sufficient quality. Beyond that, the size and the density of 
the networks prove to be important factors for consideration. Finally, we explore several ensemble methods and show that combining 
multiple networks may improve the network propagation approach. 

Keywords: GWAS; network propagation; molecular network; disease gene. 

Identifying genes causally connected to disease is crucial for 
understanding disease aetiology and designing novel therapies. In 
some cases, human diseases are causally linked to a single gene. 
For example, mutations in the HTT gene, which encodes a pro-
tein called huntingtin, cause Huntington’s disease [1]. Many other 
diseases, such as Parkinson’s or Alzheimer’s disease, and several 
types of cancer, result from many genetic and environmental 
factors. Moreover, different combinations of genetic factors may 
cause the same or a related disease phenotype, which is due to 
genetic heterogeneity. In these cases, affected individuals exhibit 
the same or related disease phenotype, but the complex genetic 
causes may vary significantly between individuals. In addition, 
sequence variants that contribute to the disease phenotype in one 
individual with a specific genomic background may also be found 
in the healthy population. 

In some instances, contributions from individual genetic vari-
ants do not simply add up, but combine in complex epistatic 
patterns [2, 3]. In general, multifactorial diseases are linked to 
multiple risk genes that influence disease occurrence in a com-
plex manner [4]. 

GWA studies, paired with reference panels such as those 
provided by the 1000 Genomes Project Consortium [5] or the  
Haplotype Reference Consortium [6], can efficiently analyse up 
to ∼ 107 locations across the genome for their contribution to 
a pathological phenotype, opening the way for unbiased large-
scale discovery of disease genes. The genetic variants studied, 
most commonly single nucleotide polymorphisms (SNPs) and 
copy number variants (CNVs), that surpass a chosen significance 
threshold are subsequently analysed to identify disease-causing 
genes. 

As GWA studies involve simultaneous statistical tests for 
numerous variants, it is likely that the compared groups (healthy 
vs diseased) will appear to differ in at least some of them by 
chance. Therefore, multiple hypothesis testing corrections have to 
be applied to prevent erroneous inferences. Typically, this requires 
a strict significance threshold for individual comparisons, possi-
bly leading to loci being missed [7]. In particular, genetic variants 
with a low effect size or that interact with other variants are 
difficult to identify, while the variants detected by this approach 
typically have modest effect sizes and do not fully account
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for disease heritability. The analysis is further complicated 
by the fact that genetic variants are, in general, not independent 
of each other, due to factors such as different rates of genetic 
recombination and population structure. The resulting non-
random associations between alleles (Linkage Disequilibrium, LD) 
introduces additional challenges in the analysis of population-
level variants. 

It is thus difficult to separate causal variants from the back-
ground noise of sequence variation, and large test populations 
are required to overcome a lack of power in the analysis of 
multifactorial diseases. 

On the other hand, the polygenicity of a disease also offers 
opportunities; specifically, we may expect that genes involved 
in a specific phenotype might organize into known connected 
groupings or pathways. These network associations present an 
additional source of information to inference based on GWAS 
summary statistics. 

Several approaches have been proposed to leverage this addi-
tional layer of biological knowledge. In this work, we focus on the 
challenges involved with the application of network propagation 
methods [8] to GWAS summary statistics. In this context, we 
employ network propagation as an umbrella term that gathers 
mathematical formalisms based on random walks (RWs) or infor-
mation diffusion applied to graphs in which the nodes represent 
the genes and the edges highlight biological connections. We focus 
on GWAS summary statistics because this type of biological data 
can be easily shared without incurring the challenges of storing 
and publishing sensitive biological data. 

With this work, we aim to provide insights into the steps that 
researchers have to implement to employ network propagation 
methodologies. The analysis procedure offers many opportunities 
for the implementation of suitable inductive biases. Firstly, the 
processing of the GWAS data and the subsequent aggregation of 
the SNP-level P-values can reflect different relationships between 
genetic variants and protein coding genes, based on 3D struc-
ture, genetic proximity, and functional relationships. The choice 
of molecular network also influences the type of information 
used to complement the GWAS summary statistics. Finally, the 
specific propagation algorithm can be selected and tuned to 
focus on different aspects of the genetic pathways of disease. 
A schematic representation of the aforementioned steps can be 
found in Figure 1. We will present insights from the published 
literature on these design choices, and then we will showcase a 
small case study where we apply a simple network propagation 
scheme to five selected networks to analyse GWAS results from 
three diseases. 

BACKGROUND 
The procedure for GWAS consists of a number of crucial experi-
mental and computational steps, including the selection of appro-
priate study populations, data collection, genotyping, imputation, 
quality control, association testing and replication. These steps 
are reviewed in detail in [9]. Here, we focus on the downstream 
analysis that starts with the mapping of variants to genes, and 
the aggregation of the variant P-values to gene-level scores. It is 
followed by selecting the network and the propagation algorithm. 
Lastly, putative disease genes are identified based on ranking or 
similarity criteria. 

Mapping genetic variants to genes 
The first step is mapping the scores of individual variants for asso-
ciation with the disease (generally P-values) to a corresponding 

gene [10]. Here, we focus on SNPs, as they are the most common 
type of genetic variant analysed in GWAS, although the following 
discussion applies to other small-scale variants. 

Associating SNPs to genes can be done in three main ways. 
The simplest approach is to associate with each gene the SNPs 
that fall within the start and end of the gene body. Since many 
significant disease-associated variants fall into intergenic regions 
[11], the gene borders are generally extended with buffers of 
several thousand base pairs to account for nearby promoter or 
enhancer elements connected to the gene. However, distal trans-
regulatory elements such as enhancers can often be found at high 
genomic distances [12]. These important functional elements far 
outnumber the genes in the human genome [13]; additionally, 
enhancers may have no functional effect on proximally located 
genes, but regulate far away genes instead. The simple genomic 
distance method can therefore lead to missing or spurious asso-
ciations between loci and genes. 

An alternative methodology is chromatin interaction mapping, 
in which we consider physical distances in 3D chromatin con-
tact maps [14] and associate SNPs with the nearest gene within 
each topologically associated domain (TAD)[7]. TADs are seg-
ments of the genome that are highly enriched for DNA-DNA 
contacts within the segment; owing to this topological constraint, 
TADs are thought to group variants with the genes they likely 
regulate. 

Finally, SNPs, in particular variants in non-coding regions, can 
be associated with genes by examining their correlation with gene 
expression level as phenotype. SNPs with this effect are called 
expression Quantitative Trait Loci (eQTL). eQTLs offer great func-
tional insight on the relationship between SNP loci and the genes 
they may regulate; however, they show considerable variation 
across tissues, which may impose additional challenges for their 
use in the network propagation framework. A careful selection 
of eQTLs in tissues that are relevant to the disease studied is, 
therefore, a crucial element for the robust application of this 
method. 

Comparisons between these three methods for SNP-gene map-
ping have shown that the choice of methodology has a consider-
able impact on the number of gene-SNP associations considered 
in the analysis [15]; the selection of an appropriate mapping 
approach is an experimental design choice that requires evalu-
ation for its impact on downstream analysis. 

Generating gene-level scores 
Once each SNP is associated with a gene, their individual scores 
have to be combined into a gene-level score. The most straightfor-
ward approach is to assign to each gene a binary value indicating 
the presence of SNPs that show significant association with the 
disease. However, previous works have shown that the use of 
network propagation for signal amplification is hindered when 
using discrete values [16]. 

The alternative approach is to combine the P-values for SNPs 
into an aggregate gene-level P-value. This score generally out-
performs the discrete values, possibly because it transfers more 
information from GWA studies by assigning larger weights to 
genes with the strongest associations [10]. 

Among the aggregation methods, the simplest is to assign to 
each gene the lowest P-value (i.e. the strongest association) within 
the SNPs mapped to the gene (an approach often referred to as 
minSNP) [17, 18]. This approach is biased towards longer genes, 
and does not account for LD between SNPs. To overcome this 
bias, subsequent methods included either permutations [19, 20], 
or simulations (VEGAS [21], VEGAS2 [22]) of the SNPs associations.
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Figure 1. Overview of the workflow for the application of network propagation methods to GWAS summary statistics. The analysis of GWAS summary 
statistics begins with the selection of a methodology to map variants to protein-coding genes. The P-values for the variants associated with each gene 
are aggregated to generate gene-level P-values. The scores are overlaid on a selected molecular network, and the information is diffused with a suitable 
propagation algorithm. A selection criterion is then employed to obtain sets of candidate disease genes from the propagated information. Each of the 
steps involved presents important design choices that affect the results obtained through this approach. 

Such algorithms tend to require access to the underlying geno-
types and are computationally intensive. 

A more efficient methodology is the use of regression-based 
models (SKAT [23], MAGMA [24]), which can include covariates 
to account for population stratification. Nevertheless, these 

methods still require access to genotypic data, which is incon-
venient when working with GWAS summary statistics. 

A few aggregation methods include additional information to 
improve the statistical power of the downstream analysis, such as 
GATES [25], that can assign weights to SNPs based on functional
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information, or RAREMETALS [26], which adopts a meta-analysis 
framework. More recently proposed, COMBAT [27] is an ensemble 
method that combines VEGAS, GATES and SimpleM, a variant of 
minSNP that includes multiple hypothesis correction [28]. 

Another interesting approach, although less used, is the circu-
lar genomic permutation (CGP) method [29]. CGP can be applied 
to GWAS summary statistics, corrects for the gene length bias 
and considers the LD between SNPs. Furthermore, An exact and 
efficient algorithm for CGP, called fastCGP, has been recently 
proposed [30]. 

One of the more recent works that focuses specifically on the 
aggregation of P-values is PEGASUS [31], a method that computes 
gene scores analytically from a null chi-square distribution that 
captures LD between SNPs in a gene. It requires only GWAS 
summary statistics and a reference population for the LD cal-
culations. PEGASUS is not biased to gene length and is sensitive 
to genes with multiple SNPs that are moderately associated with 
the phenotype of interest. A similar method that makes use of 
efficient numerical approximations for an analogous test statistic 
is fastBAT [32]. 

Network propagation methods that leverage such gene-level P-
values tend to assign to each node the −log10(P-value) score. 

Selecting the network 
The diverse biological and functional relationships between genes 
and gene products are captured in molecular networks [33]. In a 
molecular network, nodes represent biological entities (e.g. genes, 
proteins, metabolites), and the edges represent direct or indi-
rect relationships. In a protein–protein interaction (PPI) network, 
for example, the proteins represented by the nodes are con-
nected if they share a functional relationship. The label ‘molecu-
lar network’ includes PPI networks, gene co-expression networks, 
metabolic networks or gene–gene Interactions networks. 

In the analysis of disease genes, PPI networks are the most 
commonly used molecular networks because proteins perform 
a variety of critical functions in the biological processes that 
sustain an organism [34]. However, PPI networks are incomplete 
and biased towards extensively studied genes [35, 36]. It has 
been observed that the limitations of existing PPI networks may 
constitute the most significant bottleneck to the use of network 
propagation methods for GWAS data [16]. Several methods have 
been developed to compensate for the limitations of PPI networks, 
with approaches such as correcting for node degree (DADA [37]) or 
‘coreness’ (NetCore [38]). 

Various algorithms have been proposed to reduce noise in 
molecular networks in general. For example, DRaWR [39] adopts 
a two-stage RW method, where a first propagation cycle extracts 
a relevant subnetwork from a heterogeneous graph, to then 
apply a Random Walk with Restarts (RWR) algorithm for gene 
ranking. 

A recent systematic evaluation of molecular networks offered 
insights on their use for the identification of disease genes [40]. 
Generally, performance scales with the size of the network; while 
more extensive networks contain more false positives, it appears 
that the discovery of new interactions outweighs this issue [40]. 

Propagation algorithms: mathematical 
formalisms 
The term network propagation is a broad categorization that 
encompasses various methods. Generally, a network propagation 
method superimposes some information on a graph and then 
iteratively diffuses this information to highlight nodes (genes) 
related to the original signal. The specifics of this process 

can vary significantly depending on the diffusion mechanism 
modelled (e.g. RWs on graphs, heat diffusion), the type of graph 
(directed or undirected), the number of graphs, and other design 
parameters. A comprehensive review of the general use of 
network propagation for disease genes discovery can be found 
in [8]. 

RWs on graphs offer an efficient formalism to model the trans-
fer of information. We can represent an undirected graph using a 
normalized adjacency matrix W, and the measured gene-level scores 
as a vector p0. With this structure, an iteration of the information 
diffusion process can be calculated as 

pt = Wpt−1 (1) 

Indefinite repetition of the diffusion step ends up in uninfor-
mative states where all nodes have uniform value; because of 
this, most of the network diffusion methods that explicitly model 
RWs employ a variant named RWRs, also known as personalized 
PageRank (a variant of PageRank [41]) or insulated diffusion. 
In an RWR framework, in addition to the standard transition 
probabilities defined by the adjacency matrix, each walk has 
a certain probability of returning to the root node. In suitable 
conditions (connected network and eigenvalues of W not larger 
than 1), this process converges to a steady-state that can be 
calculated as 

ps = (1 − α) (I − αW)−1 p0 (2) 

where α is a parameter that regulates the trade-off between 
diffusion and retaining the initial information, by controlling the 
probability of continuing the walk at each step. 

In general, efficient propagation methods can be calculated 
using matrix multiplication between the initial state p0 and a 
suitable matrix Wgraph derived from the adjacency or Laplacian 
matrices of the graph. 

This formalism can be extended to account for directed 
or weighted graphs, multiplex and heterogeneous networks, 
and more. 

Network propagation is a special case of graph convolutions, 
a mathematical operation extensively used in graph neural net-
works, which would suggest the possibility of extending the infor-
mation diffusion analysis using a deep learning framework. How-
ever, due to the low power of GWA studies, deep learning mod-
els run the risk of overfitting and being outperformed by more 
straightforward propagation methods. 

Identifying potential risk genes based on rank or 
similarity 
Network propagation methods can be divided into two main 
categories, depending on the desired output information. 

Ranking-based methods aim to assign a score to each gene in 
the network and then rank their significance based on this score. 
Within this framework, an important design choice is the selec-
tion of significant genes based on the final scores. The simplest 
approach is to fix a hyperparameter N and select the top N genes 
in the ranking. Alternatively, methods that propagate P-value 
scores can use FDR control to select a threshold or distribution 
inflexion point thresholds. 

Similarity-based methods evaluate gene-gene similarity to 
detect dense gene modules. Such methods build similarity 
matrices between genes and then look for clustered submatrices 
that show high internal similarity. The general underlying
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assumption is that densely connected subgraphs in a molecular 
network include genes working for common functionality, which, 
when altered, can be the causal factor for a disease. 

The selection of disease genes using scores derived from net-
work propagation offers interesting opportunities that can com-
plement more domain-focused methods and expand the pool of 
candidate disease genes. Alternative computational methodolo-
gies for the identification of disease genes often rely on knowl-
edge databases such as Gene Ontology [42] and KEGG [43]. Such 
domain- or pathway-based approaches often suffer from con-
siderable biases towards prior knowledge [44]. Network propaga-
tion methods, while not free from biases, offer a complementary 
approach that enables an alternative search strategy for the 
exploration of possible disease genes. 

Beyond a single undirected graph 
The basic formulation of network propagation needs only a single 
undirected graph. However, we may wish to include more domain 
knowledge in our analysis, which can be accomplished in a variety 
of methods. 

A simple extension includes the use of multiple graphs with an 
ensemble method. The initial scores can be propagated separately 
on each graph, and the resulting scores can be merged for unified 
analysis. The combination of scores can be a simple average of the 
ranks on individual networks or a more elaborate combination 
that is useful for multiple tasks, such as the low-dimensional 
representations produced by Mashup [45]. 

Alternatively, multiple graphs can be combined in a single 
propagation model by using RWs on multilayer or multiplex net-
works [46, 47]. At each step, the walk can proceed to neighbouring 
nodes in the same network or to the corresponding node in a 
different network. 

Finally, the diffusion formalism can be extended to heteroge-
neous networks, i.e. graphs whose nodes can represent different 
types of entities (e.g., gene-phenotype networks). Heterogeneous 
networks capture the interaction between various biological enti-
ties in a manner that multiplex graphs cannot emulate. An exam-
ple of this approach is the bipartite graph propagation in [48], 
where one set of nodes representing individuals is connected to 
a second set representing relevant SNPs. 

Any combination of the previous extensions is feasible to 
include as much domain knowledge as possible. RWRs on 
heterogeneous multiplex networks, for example, have shown 
great promise in combining different types of interactions for 
the identification of disease genes [46]. 

Network propagation for identification of disease 
genes 
The most widespread approach for identifying putative causal 
disease genes is to select previously known disease genes (e.g. 
those deemed as significantly associated with the disease by 
GWAS) that are used as starting ‘seeds’ to propagate information, 
often using PPI networks. RWRs and heat diffusion models are 
the most common formalisms adopted for the actual propagation 
step, possibly with additional processing steps to reduce the FDR 
and limit the biases in the molecular graphs. 

Overall, RWRs are the basis for most state-of-the-art methods, 
generally including additional measures to improve power or 
robustness. Such measures include the use of heterogeneous net-
works [49], weighted PPI networks and estimates of prior probabil-
ities (PRINCE [50]), or reweighting of interactions close to known 
disease genes (ORIENT [51]). 

Another possible improvement to the RWR methods is 
to change the simple ranking of resulting gene scores to a 

more elaborate comparison scheme. DP-LCC [52], for example, 
compares diffusion profiles (i.e. the stationary distributions 
obtained from RWRs) for known disease genes and the candidate 
disease genes considered in the analysis. Candidate genes are 
then prioritized according to the similarity of their diffusion 
profile with the query disease genes. 

One of the most promising directions of development is the 
inclusion of additional sources of information to the analysis 
process. Several methods, for example, include information on 
disease genes from closely related diseases (NPDE [53]), based on 
the assumption that such diseases are likely to have a similar 
molecular basis [54]. The use of multi-omics datasets represents 
another active area of research; network propagation methods 
can make use of these transversal sources of information either 
by separately analysing each channel of information and then 
combining their results, or by propagating a vector representation 
of each node in the network, where each feature encodes the infor-
mation from one dataset for that gene [55]. A potential source of 
this kind of complementary information is represented by the sig-
nificant gene-trait associations derived from Transcriptome-wide 
Association Studies (TWAS) [56, 57]. TWAS have demonstrated 
good power in the presence of pleiotropy and higher heritability 
of expression [58]. Gene expression and its genetic regulation 
are central focus points for TWAS and, although some works 
have criticised their monolithic use for both feature selection and 
aggregation [59], they have demonstrated remarkable efficacy in 
detecting disease-gene associations and offering insights into the 
mechanisms of these links [56]. 

Finally, the aggregation of signals across possible disease genes 
for the identification of significant subnetworks offers exciting 
opportunities for improving the statistical power of the analysis 
performed. For the identification of gene modules, some of the 
most popular models include HotNet [60], and its derivative ver-
sions HotNet2 [61], and Hierarchical HotNet [62], that model an 
insulated heat diffusion process. The advantage of HotNet and 
other similarity-based methods is that they combine the signals 
of rare variations that affect the same biological processes, thus 
considerably improving statistical power. In contrast, the individ-
ual SNPs might be missed by a simpler ranking-based propagation 
method. 

METHODS 
In the following sections, we present a set of benchmarking 
experiments that we use to highlight and corroborate general 
trends that emerge from the literature on network propagation 
for disease gene discovery. We describe here the sources of data 
used for the selected diseases and molecular networks, and the 
evaluation metrics used. Finally, we present the results observed 
in this case study. 

Data 
GWAS summary statistics were selected for three diseases as case 
study, specifically asthma [63], autism spectrum disorder (ASD) 
[64] and schizophrenia from [65]. Data for ASD and Schizophrenia 
data have been downloaded from the Psychiatric Genomics Con-
sortium1 . Data used for asthma are available through the GWAS 
Catalog [66]. 

The three sets of summary statistics were processed using 
PEGASUS [31] with the provided additional files derived from the 
1000 Genomes project. 

1 https://www.med.unc.edu/pgc
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Table 1: For each disease, we report the number of genes 
selected as seeds based on their aggregate P-value resulting 
from PEGASUS, as well as the number of target genes that do 
not overlap with the set of seed genes. 

Disease N. seed genes N. target genes 

Asthma 118 625 
ASD 30 723 
Schizophrenia 536 949 

Target genes for the three diseases were derived from the 
GWAS Catalog [ 66] (downloaded on 26 January 2023). The data 
downloaded also include the genes associated with each SNP 
(“Mapped gene”); all genes included in the set of SNP associated 
with the target disease with a P-value ≤ 5×10−8 were gathered as 
the target set. 

Table 1 reports the number of seed and target genes resulting 
from the preprocessing of the GWAS summary statistics. 

Gene networks 
For the RWR experiments, we selected five molecular networks 
covering several facets of gene biology, which were downloaded 
from NDEx2 [67–69]. HumanNet (v3) [70] combines protein-protein 
interactions and gene functional information. We specifically 
selected HumanNet-XC, a version of the network extended by 
co-citation. BioPlex 3 [71] consists of two PPI networks derived 
from 293T (human embryonic kidney) and HCT116 (colorectal 
carcinoma) cell lines. We selected the network composed of the 
shared interactions between the cell lines, which represents con-
served mechanisms in human biology. ProteomeHD [72] is a co-
regulation map of the human proteome. We downloaded the 
smaller version of the network, which covers the top 0.5% co-
regulated proteins. PCNet (Parsimonious Composite Network) [40] 
is derived from merging several molecular networks and pre-
serving interactions supported by at least two networks. STRING 
[73] results from combining information from high-throughput 
experimental data, literature and database mining, and genomic 
context analysis. 

These networks were selected to test the performance of 
network propagation in a variety of settings. STRING, for example, 
is a well-established network in the domain of PPI analysis 
and, like HumanNet, it aggregates information from several 
sources. BioPlex3 and ProteomeHD, instead, represent networks 
derived from a more selective analysis, and offer test cases 
with a smaller number of vertices than the aforementioned 
networks. PCNet, finally, is a composite network explicitly 
derived from a systematic evaluation of network analysis 
for disease gene discovery; for this reason, we wished to 
examine whether this purpose-made network could outperform 
networks that are not specifically designed for this task. When 
joined into a multilayer network, these molecular networks 
offer complementary views of the interactions between genes, 
which ideally enhance the outcome of a network propagation 
analysis. 

In Table 2, we report the size of each network. 

Performance metrics 
Evaluating disease gene prediction models is far from trivial. Sev-
eral methods in the literature adopt a leave-one-out methodology: 

2 https://www.ndexbio.org 

Table 2: Sizes of the networks analysed. 

Network N. nodes N. edges 

HumanNet v3 [70] 18 593 1 125 494 
BioPlex 3 [71] 8364 35 704 
ProteomeHD [72] 2718 63 290 
PCNet [40] 20 517 2 693 250 
STRING [73] 17 079 420 534 

considering a set of disease genes, one of them is removed, while 
the rest is fed as input to the model, to then evaluate how well 
the target gene is retrieved. This methodology is convenient, but 
it risks introducing selection biases in the model, as they are 
tuned to perform well on this specific task rather than how well 
it discovers new disease genes in general. 

To overcome this limitation, our testing setting considers only 
data from a GWA study performed before the year 2020, while 
targeting all the currently known disease genes found in GWAS 
analyses. We essentially aim to answer the question: how well does 
the algorithm rank disease genes that were discovered by subsequent 
studies? 

This setting is similar to many common information retrieval 
tasks. We therefore measured the prediction performance using 
the standard metric Average Precision@K (AP@K), an ordered rank-
ing metric that evaluates the relevance of the top K predictions, 
as well as their position in the ranking. 

Other works in the literature have measured the performance 
of network propagation analyses through the use of classification 
metrics such as the area under the receiver operating charac-
teristic curve [74]. We believe, however, that an ordered ranking 
metric such as AP@K offers a more complete picture of the 
effectiveness of an algorithm in ranking putative disease genes 
so that the most promising candidates appear at the top of the 
ranking. 

AP@K is derived from Precision@K (P@K), which measures how 
many of the first K items predicted are actually relevant: 

P@K = 
N. of relevant genes in the first K ranks 

K 
(3) 

Average Precision@K is the average of P@N for the values of N 
ranging from 1 to K that correspond to relevant items. Several 
definitions of AP@K are found in the literature. We adopt the 
version of AP@K in which the normalization factor is defined as 
the minimum of K, and the total number of relevant items M, 
which ensures that the AP@K always ranges between 0 and 1, for 
all queries [75]: 

AP@K = 
1 

min(K, M) 

K∑

N=1 

P@N ∗ rel(N) (4) 

where rel(N) is a binary indicator variable that assumes the value 
1 if the  Nth ranked gene is a true positive, and 0 otherwise. 

In our experimental setting, AP@K captures the number of 
relevant disease genes retrieved by the propagation algorithm, 
favouring configurations that rank the relevant genes higher 
among the top K predicted. 

The averaging of AP@K over all possible disease-network 
queries (dis, net) is used to calculate the mean Average Precision@K
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metric, which offers a global summary of the performance of 
network propagation methods: 

mAP@K = 1 
|(dis, net)|

∑

(dis,net) 

AP@K(dis, net) (5) 

RESULTS 
Several recent works have included benchmarking and evaluation 
of propagation methods [10, 34, 49, 74]. 

Determining the effectiveness of a network propagation 
algorithm is quite challenging. The approaches chosen include 
leave-one-out validation and external validation with selected 
datasets. We note, however, that since we often lack access to 
‘gold standard’ datasets, any such evaluation methodology risks 
including systematic biases that would reward models that detect 
known and well-studied disease genes, while penalizing models 
that classify rare variants as significant. 

The development of a standard set of benchmarking tasks for 
the evaluation of network methods would be highly beneficial for 
robust comparisons between state-of-the-art models. Neverthe-
less, such a task is quite daunting and would require the selection 
of diseases where disease genes are known with high certainty 
and possibly the use of simulated sets. 

We present here a set of benchmarking experiments to analyse 
some design choices involved in applications of network propaga-
tion. We simulate a strict experimental setting, where the only 
input data available comes in the form of summary statistics of 
GWA studies. Several methods in the literature, such as PRINCE 
[50] and VAVIEN [76], include information on disease genes from 
diseases related to the target disease that is being analysed. We 
forego this approach to evaluate the basic factors contributing to 
the performance of network propagation methods. 

As disease case studies, we select asthma, ASD and schizophre-
nia. For each disease, we downloaded GWAS summary statis-
tics from a publicly available study, and processed them using 
PEGASUS [31] to generate gene-level P-values. While more recent 
frameworks for the analysis of GWAS P-values have been pro-
posed, they do not focus specifically on the aggregation of gene-
level P-values like PEGASUS, which was therefore employed. 

We define as seed genes the genes that result statistically sig-
nificant from the aggregated SNP P-values. To select the seed 
genes, we use a nominal significance level of 1%, which was 
divided by the number of genes present in the processed data 
for a given study to get a Bonferroni-corrected P-value; the sig-
nificance level and the multiple hypothesis testing correction are 
chosen to provide a stringent selection criterion that limits the 
inclusion of false positives in the pool of disease genes. The genes 
whose aggregate P-values fall below the adjusted P-value thresh-
old are considered significant. In our experimental setting, the 
seed genes represent the prior knowledge, i.e. the genes for which 
we are sufficiently certain that a link to the disease analysed 
exists. 

We define as target genes all the genes that are currently known 
to be relevant for the diseases considered. Target disease genes 
are derived from the GWAS Catalog [66], by selecting all known 
SNPs associated with the target disease with a P-value < 5 ∗ 
10−8 and collecting all the associated genes. We remark that the 
association of a gene with a significant SNP in the GWAS Catalog 
does not necessarily describe the causal role of the gene for a 
disease. Further annotation and functional analysis is needed to 
draw such conclusions. However, these target genes provide a 

convenient measure to determine how well the network propa-
gation experiments detect relevant genes. 

The genes at the intersection of seed genes and target genes 
for a disease are removed from the pool of targets, to ensure only 
new knowledge is considered in the evaluation of performance. 
Essentially, the experimental question tested involves measur-
ing how many of the currently known disease genes we can 
retrieve, starting from the incomplete knowledge provided by a 
single GWAS. 

Five gene networks have been downloaded for testing network 
propagation algorithms: PCNet [40], BioPlex3 [71], ProteomeHD 
[72], HumanNet v3 [70] and STRING [73]. 

To measure how well each network propagation experiment 
manages to retrieve target genes that do not appear as significant 
in the original GWAS summary, we employ the standard informa-
tion retrieval metric AP@K, which accounts for both the number 
of correct predictions in the top K genes and for their position 
in the ranking. AP@K can be aggregated over all disease-network 
queries using mean Average Precision@K (mAP@K), which provides a 
convenient summary of the performance of network propagation 
approaches. All the experiments are performed with the PageRank 
implementation of the RWR algorithm from the python package 
NetworkX [77]. 

Gene scores outperform seed genes for 
conservative RWRs 
Most network-based methods for disease gene identification in 
the literature make use of gene seeds, known disease genes that 
are used as a starting point to find new candidate disease genes. 
While well established, this approach assigns equal importance 
to all disease genes, which may not reflect their role in causing 
the disease. 

Assigning different scores to each gene would allow more 
flexibility in this regard. Particularly in the case of GWAS analysis, 
we can derive gene-level P-values and assign to each gene as 
score the negative logarithm of the P-value (−log10(P-value)). In 
this way, more significant genes are given a higher weight in the 
propagation procedure. 

We compared the performance of RWRs with different selec-
tions of the parameter α, which represents the probability of 
continuing the RW at each node, and selecting the K top ranking 
genes as candidates. 

In Figure 2(A), we compared the performance of network prop-
agation with the use of gene scores versus using the seed genes to 
assign an initial binary value to the nodes. The plot displays the 
mean of Average Precision at K (i.e. mAP@K) for the retrieval of 
target genes among the top 20, 50 and 100 genes in the rankings 
across all network-disease combinations. The value of the plotted 
line at α = 0 corresponds to skipping the propagation step, and 
was omitted for the seed genes method, as the AP@K would be 0 
by our definition of the prediction target. 

It is clear that the use of P-value-based scores preserves much 
more information and allows us to retrieve more relevant genes 
than simply assigning a binary value to indicate significance. In all 
but one of the disease-network combinations, the P-value scores 
outperformed the use of seed genes, with the notable outlier 
represented by the combination ASD-PCNet (Figure 2(A) and 2(C)). 

We also highlight a general increase in performance with a 
conservative RWR process (α close to 0) compared to skipping the 
propagation step (α = 0). In 12 out of 15 of the disease-network 
combinations, the highest AP@K is achieved with a positive value 
of α (i.e. with the contribution of the propagation step), corrob-
orating the usefulness of diffusion methods. However, the trend
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Figure 2. Comparison of RWRs based on gene-level P-values versus the use of seed genes. (A) Range of performance across diseases and networks for 
different values of the probability of continuing the RW. The use of seed genes is more robust to hyperparameter tuning, but gene scores outperform 
seed genes when selecting α close to 0. The shaded areas represent the 95% confidence interval. (B) The combination ASD-PCNet proves to be the only 
outlier where the use of seed genes clearly outperforms the P-value-based scores. (C) The performance of the RWRs shows considerable variability 
across disease-network combination. The ProteomeHD network, in particular, shows poor performance, likely due to the small number of available 
genes. (D) Results of the simulation of RWRs starting from asthma seed genes using the STRING network, for two example values of α. For each gene, 
we performed RWRs for 100 000 restarts, and considered the shortest path distances between the starting gene and the termination gene, filtering out 
the walks that terminate on the starting gene. The resulting histogram shows the fraction of walks that terminate on nodes that are one, two or three 
hops away from the starting gene. This distribution can be used as a criterion to select the hyperparameter α based on the desired level of exploration 
of the network. 

shows high variability across the tested configurations, as shown 
in the example in Figure 2(C). 

The improvements found for small values of α suggest that 
the local neighbourhood of disease genes is more important than 
the global properties of the graph for the identification of disease 
genes. This observation is consistent with the established liter-
ature; some network-based methods, such as ORIENT [51], have 
been explicitly designed to exploit this fact. 

An additional observation to consider is that the best perform-
ing network is not constant across diseases. Using the score-based 
propagation, HumanNet achieves the highest AP@50 for asthma 
and ASD, while PCNet performs better in the analysis of the 
schizophrenia GWAS. This result is consistent with previous works 
in the literature, which highlighted how the choice of molecu-
lar network can have a large impact in the analysis of certain 
diseases [40]. 

The choice of the α parameter in a practical setting would 
depend on the desired outcome of downstream analysis. Some 
works in the literature framed this parameter optimisation within 
the framework of the bias-variance trade-off and aimed to tune 
the parameter using consistency across replicates and across -
omics datasets [78]. Alternatively, the α parameter could be tuned 
to control how far to range from known disease genes. As an 
example of this kind of procedure, we considered the STRING 
network and the set of seed genes related to asthma. Starting 
from each seed gene, we performed RWRs with two different 
α parameters, for 100 000 restarts each. For each termination 
node (i.e. where the walk restarts) of the RWs, we calculated the 

shortest distance path from the starting disease gene, filtering 
out the walks where the start and the termination correspond. In 
Figure 2(D), we show the fractions of such random walks that end 
up on genes that are one, two or three hops away from the starting 
gene. The RWRs with α = 0.1 are essentially influenced only by the 
one-hop neighbourhood of the disease genes, while α = 0.3 shows 
influence from the two- and even three-hop genes. Using a similar 
procedure, a researcher may tune the restart probability to select 
the desired level of exploration of the network. 

Larger networks display better performance 
Previous works have suggested how the size of the network may 
play an important role in the performance of network-based 
analysis of disease genes [40, 74]. We visualise this dependency 
in Figure 3(A), where we selected the best performing RWR for 
each network and each disease. The scatter plots display a 
general pattern of improved performance with larger networks. 
This trend is likely rooted in a multitude of causes, not least 
of which the fact that smaller networks may not include the 
highly significant genes from the GWA study or important target 
genes (as clearly highlighted by the poor performances of the 
ProteomeHD network, the smallest of the molecular networks 
considered). 

Notably, the performance of the propagation procedure is quite 
low on the data for ASD, possibly due to the lower statistical power 
of the available summary statistics. 

In addition to the size, the connectivity of the network may 
contribute to determining its relevance to the disease analysed.
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Figure 3. Network properties affect the result of propagation algorithms. (A) Best performance of the network propagation method for each network, 
plotted against network size. An upward trend is apparent, suggesting that larger networks are beneficial for this analysis. (B) The performance of the 
network propagation methods for different densities of connections displays a peculiar pattern, suggesting that networks that are too sparse or that 
include too many connections may hinder the use of network propagation. 

We measured the network density, defined as the ratio of observed 
edges to possible edges, which we can represent as 

Dnet = 
Nedges 

N ∗ (N − 1)/2 
(6) 

where N is the number of nodes in the network. 
Figure 3(B) presents the best-performing RWR for each network 

and each disease. 
The trend presented suggests that a graph that is neither too 

sparse nor too dense would be the best candidate for network 
propagation methods. Most likely, sparse networks lack the nec-
essary connections to transfer information to relevant disease 
genes, while dense networks allow the information to diffuse too 
much to isolate promising candidates. This result emphasises the 
need to expand known gene-gene networks, but always keeping 
the rate of false positives into account. 

Ensemble methods can improve on the use of a 
single network 
The use of a single network is convenient from a computational 
perspective, but may restrict the information on gene-gene rela-
tionships that we can use in our analysis. We tested how an 
ensemble derived from the RWRs on a single network performs 
in the task of retrieving disease genes. Specifically, we considered 
the rankings generated by averaging across networks the rank 
of each gene (Avg. Rank), provided their presence in at least two 
networks. 

Additionally, we performed RWRs on the multilayer network 
generated by connecting all 5 networks. To perform these 

experiments, we consider the adjacency matrices of each network, 
and join them into a single overarching matrix. We then add to 
this global adjacency matrix the edges that connect the same gene 
in different networks. The result is the multilayer supra-adjacency 
matrix [79], which can be used to extend the RWR formalism to 
multilayer graphs [47]. 

The performance of these methods is compared to the range of 
performance for single network RWRs for each disease in Figure 4. 

Generally, Avg. Rank outperforms the use of single networks, 
while the Multilayer RWR performs well only for very localized 
RWs. For the latter, we hypothesize that connections to the denser 
networks allow the information to easily diffuse away from dis-
ease genes quicker than single network propagation for increasing 
values of α, which results in a loss of information. Genes that rank 
high on multiple individual networks, on the other hand, are likely 
to be more relevant to the target disease. 

Avg. Rank also appears to offer robust performance for higher 
values of α, which corresponds to the case where information can 
diffuse further from the starting configuration. This approach, 
therefore, has the potential to explore disease genes that are not 
found in the immediate neighbourhood of known disease genes, 
but that are reached by traversing more edges in the graph. 

CONCLUSIONS 
The use of molecular networks to improve the power of GWAS 
analysis is a promising tool that requires several design choices to 
be most effective. Firstly, we must select one or more appropriate 
networks; for this step, a general rule of thumb seems to be
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Figure 4. Comparison of the performance for single network RWRs to the two listed Avg methods and RWRs on a multilayer network composed by the 
five gene networks, represented as mAP@K with 95% confidence interval. Avg. Rank appears to offer robust performance even for high values of α, which  
enables the explorations of genes further apart from known disease genes. 

to include as much information possible (i.e. more extensive 
networks and more graphs) with the secondary aim of limiting 
the number of false positives in the interactions. PPI networks are 
widespread in the literature. However, in the case of GWAS, it is 
common to find SNPs for genes that are not well studied in PPI 
graphs. Several works have shown great promise with heteroge-
neous networks, although the node types should be selected to be 
relevant for the disease analysed. 

Afterwards, the SNPs in the GWAS study must be mapped to 
the relevant genes to combine SNP-level P-values into gene-level 
scores. Several frameworks have been developed to this end, with 
recent development offering more efficient methodologies that 
require only linkage disequilibrium data in addition to the GWAS 
summary statistics. 

The choice of propagation algorithm depends on the desired 
outcome for the selection of putative causal genes. Similarity-
based methods seem to offer a competitive edge over ranking-
based methods regarding statistical power. However, ranking 
methods may offer improved performance for loosely connected 
causal genes, although the choices of specific algorithms would 
vary greatly depending on the network used. 

In general, the design choices for each step of the network 
propagation procedure also depend on the downstream analysis 
that a researcher might want to implement. The most direct 
application is to simply perform a network propagation analysis, 
and then select the N genes with the highest-ranking scores that 
are not currently listed among the known disease genes for the 
target disease. This pool of candidates can then be validated 
by experimental work or other sources of biological evidence. 
Another possibility would be to use network propagation as a 
principled way to examine the similarity of diseases: if overlap-
ping sets of genes score high in the propagation procedure from 
two diseases, it might indicate a deeper connection between the 
underlying mechanisms. 

We performed benchmarking experiments in a strict setting 
where the only data available comes in the form of GWAS sum-
mary statistics. RWRs performed using five selected networks 
revealed that the use of gene scores (i.e. −log10(P-valuegene)) is  
better able to retrieve currently known disease genes from the 
GWAS Catalog when using RWRs that focus on the neighbourhood 
of known disease genes. The size of the networks appears to 
be positively correlated with the performance, consistently with 
other works in the literature. However, analysing the network 
density suggests that both insufficient and excessive connectivity 
may negatively affect the propagation process. 

Finally, we tested two methodologies to combine multiple net-
works, one of which (Avg. Rank) outperformed the other methods 

in several settings. Additionally, the averaging method displayed 
good performance even for expansive RWs with restarts (i.e. RWRs 
that range further from the originating node rather than restart-
ing frequently), which could enable the discovery of putative dis-
ease genes that are not directly connected to known disease genes 
in the available molecular networks. This result suggests that 
careful inclusion of multiple networks is beneficial to improve the 
power of GWAS analysis. 

The specific networks and diseases analysed in this case study 
offer us insights into the challenges and benefits of using network 
propagation for identifying candidate disease genes. This frame-
work, however, offers great flexibility, as it can be expanded by 
including additional sources of information and more complex 
propagation procedures. Overall, we believe that network prop-
agation constitutes a valuable tool to employ for expanding the 
pool of candidate disease genes for a variety of diseases. 

Future works might examine extensive criteria for the selec-
tion of one or more networks based on disease-specific criteria. 
Additionally, the combination of different sources of information 
with GWAS summary statistics is a promising research direction 
that is likely to offer more in-depth insights into the biological 
mechanisms of disease. 

Key Points 
• Molecular networks offer a complementary layer of 

information that can improve the analysis of GWAS 
summary statistics. 

• Network propagation methods model the diffusion 
of information using molecular networks. These 
approaches enable the identification of candidate 
disease genes or gene modules that would otherwise be 
missed with a direct statistical analysis of GWAS results. 

• The use of P-values to assign scores to the genes repre-
sented in the network offers more robust performance 
for the identification of putative disease genes. 

• The specific network and its properties, the propagation 
algorithm, and the scoring criterion constitute impor-
tant design choices for the implementation of network 
propagation approaches. 

• Ensemble methods may improve the effectiveness of 
network propagation, and enable the identification of 
possible disease genes outside the immediate neighbour-
hood of known disease genes. 
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