21 research outputs found

    Long-term (10 years) prognostic value of a normal thallium-201 myocardial exercise scintigraphy in patients with coronary artery disease documented by angiography

    Get PDF
    In order to assess the prognostic significance of normal exercise thallium-210 myocardial scintigraphy in patients with documented coronary artery disease, we studied the incidence of cardiac death and non-fatal myocardial infarction in 69 symptomatic patients without prior Q wave myocardial infarction, who demonstrated one or more significant coronary lesions (stenosis ≤70%) on an angiogram performed within 3 months of scintigraphy (Group 1). These patients were compared to a second group of 136 patients with an abnormal exercise scintigram, defined by the presence of reversible defect(s) and angiographically proven coronary artery disease (Group 2), and to a third group of 102 patients with normal exercise scintigraphy without significant coronary lesions (stenosis ≥30%) or with normal coronary angiography (Group 3). In contrast to coronary lesions observed in Group 2, patients in Group I presented more frequently with single- vessel disease (83% vs 35%, P>0·0001) and with more distal lesions (55% vs 23%, P>0·0001). Over a mean follow-up period of 8·6 years, one fatal and eight non-fatal cases of myocardial infarction were observed in Group 1. The majority of patients in Group 1 were treated medically: only 24 (35%) underwent myocardial revascularization, usually by coronary angioplasty. There was no significant difference in the incidence of combined major cardiac events (cardiac death, non-fatal myocardial infarction) in patients with normal exercise scintigraphy, with or without documented coronary artery disease (Groups 1 and 3), while the incidence was higher in Group 2. However, while the mortality remained very low in Group 1, the incidence of non-fatal myocardial infraction was not different from that of Group 2, where most patients underwent revascularization procedures. In conclusion, patients with coronary artery disease and a normal exercise thallium-201 myocardial scintigram usually have mild coronary lesions (single-vessel disease, distal location) and good long-term prognosis, with a low incidence of cardiac deat

    Incorporating scale effect into a failure criterion for predicting stress-induced overbreak around excavations

    No full text
    The evaluation of the depth of brittle failure around excavations is of major importance in order to optimize the design of underground excavations and ensure the safety of workers and equipment. The current proposed approaches to evaluate it are related to a single scale of study (intact rock or rock mass scale). Therefore, they are scale-dependent, and cannot be applied for all excavation diameter. In this paper, a generalized failure criterion including the scale effect for predicting stress-induced overbreak around excavations is developed. This failure criterion is based on the damage initiation relation (sigma(1) = A sigma(3) + B sigma(c)). The scale effect is included into it through a relation proposed to evaluate the B parameter and depending on the scale of study. The fit parameters of the relation proposed have been defined considering a database at both rock mass and intact rock scales arising from a literature review. For intact rock scale, the B parameter is defined as a function of the diameter of the excavation, expressed following a potential form. For rock mass scale, the B parameter is defined equal to 0.35, regardless the diameter of the excavation. Based on the proposed B parameter relation, the depth and extension of the brittle failure around excavations can be evaluated for any scale of study.Advanced Mining Technology Center (AMTC) through the BASAL Project FB-080

    Production and release of ISOL beams from molten fluoride salt targets

    Get PDF
    In the framework of the Beta Beams project, a molten fluoride target has been proposed for the production of the required 10(13) Ne-18/s. The production and extraction of such rates are predicted to be possible on a circulating molten salt with 160 MeV proton beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 mol.%), with melting point at 649 degrees C. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper. (C) 2014 Elsevier B.V. All rights reserved

    Radioactive boron beams produced by isotope online mass separation at CERN-ISOLDE

    Get PDF
    .We report on the development and characterization of the first radioactive boron beams produced by the isotope mass separation online (ISOL) technique at CERN-ISOLDE. Despite the long history of the ISOL technique which exploits thick targets, boron beams have up to now not been available. This is due to the low volatility of elemental boron and its high chemical reactivity which make the definition of an appropriate production target unit difficult. In addition, the short half-lives of all boron radioisotopes complicate tracer release studies. We report here on dedicated offline release studies by neutron capture and alpha detection done with implanted B-10 in prospective target materials, as well as molecule formation and ionization tests, which suggested the use of multiwalled carbon nanotubes (CNT) as target material and injection of sulfur hexafluoride SF6 to promote volatile boron fluoride formation. Two target units equipped with an arc discharge electron impact ion source VADIS coupled to a water cooled transfer line to retain non-volatile elements and molecules were subsequently tested online. The measured yield of these first B-8 ISOL beams increases in the series 8 BF 3<8 BF <8B<8 BF 2, reaching a maximum yield of 6.4x104(8)BF(2)(+) ions per C of protons

    The LIEBE high-power target: Offline commissioning results and prospects for the production of 100^{100} Sn ISOL beams at HIE-ISOLDE

    No full text
    With the aim of increasing the primary beam intensity in the next generation Radioactive Ion Beam facilities, a major challenge is the production of targets capable of dissipating high beam power, particularly for molten targets. In that context, a direct molten loop target concept was proposed for short-lived isotopes for EURISOL. The circulation of molten metal enables the production of droplets enhancing the radioisotope diffusion. The concept also includes a heat exchanger ensuring thermal equilibrium under interaction with high proton beam power. A target prototype, named LIEBE, has been designed and assembled to validate this concept in the ISOLDE operation environment. The project is now in an offline commissioning phase in order to confirm the design specifications before tests under proton beam. Successful outcome of the project can lead to new beams with great interest in nuclear structure and physics studies. In particular, investigations fall short in the region around the double magic isotope 100Sn at ISOL facilities because of the lack of a suitable primary beam driver and target-ion source unit for any of the present-day facilities. Achievable 100Sn beam intensities and purities are calculated with ABRABLA and FLUKA considering the use of a high power molten lanthanum target combined with molecular tin formation and a FEBIAD ion source. The presented option takes into consideration upgrade scenarios of the primary beam at ISOLDE, going from a 1.4  GeV–2 μA to a 2 GeV–4 μA pulsed proton beam
    corecore