29 research outputs found

    Criteri di ammissibilitĂ  e di utilizzo degli effluenti di allevamento e dei concimi ed ammendanti derivati in agricoltura biologica.

    Get PDF
    Nel modello agricolo biologico l’utilizzo degli effluenti animali e dei concimi e ammendanti da loro derivati riveste un ruolo fondamentale nella gestione della fertilità del suolo, anche in considerazione dello scarso contenuto in sostanza organica dei suoli mediterranei. Questi mezzi tecnici devono garantire una qualità agronomica, ambientale e igienico sanitaria, in relazione alle condizioni in cui le attività di produzione ani-male e vegetale sono realizzate e rispettare tutti i vincoli normativi nazionali ed europei in vigore. Nel presente contributo, vengono discusse le condizioni di ammissibilità degli effluenti in base all’allevamento di origine e ai trattamenti di stabilizzazione che questi devono subire prima della loro distribuzione sul terreno agrario o dell’impiego per la produzione di fertilizzanti. Infine viene riportato un breve accenno ai criteri di utilizzo ed alle attività di verifica dei parametri richiesti che dovrebbero essere effettuati

    Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases

    Get PDF
    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEgamma binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions

    Modulation of guanylate cyclase activating protein 1 (GCAP1) dimeric assembly by Ca2+ or Mg2+: hints to understand protein activity

    Get PDF
    The guanylyl cyclase-activating protein 1, GCAP1, activates or inhibits retinal guanylyl cyclase (retGC) depending on cellular Ca2+ concentrations. Several point mutations of GCAP1 have been associated with impaired calcium sensitivity that eventually triggers progressive retinal degeneration. In this work, we demonstrate that the recombinant human protein presents a highly dynamic monomer-dimer equilibrium, whose dissociation constant is influenced by salt concentration and, more importantly, by protein binding to Ca2+ or Mg2+. Based on small-angle X-ray scattering data, protein-protein docking, and molecular dynamics simulations we propose two novel three-dimensional models of Ca2+-bound GCAP1 dimer. The different propensity of human GCAP1 to dimerize suggests structural differences induced by cation binding potentially involved in the regulation of retGC activity

    In silico analysis and theratyping of an ultra-rare CFTR genotype (W57G/A234D) in primary human rectal and nasal epithelial cells

    Get PDF
    Mutation targeted therapy in cystic fibrosis (CF) is still not eligible for all CF subjects, especially for cases carrying rare variants such as the CFTR genotype W57G/A234D (c.169T>G/c.701C>A). We performed in silico analysis of the effects of these variants on protein stability, which we functionally characterized using colonoids and reprogrammed nasal epithelial cells. The effect of mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein was analyzed by western blotting, forskolin-induced swelling (FIS), and Ussing chamber analysis. We detected a residual CFTR function that increases following treatment with the CFTR modulators VX661±VX445±VX770, correlates among models, and is associated with increased CFTR protein levels following treatment with CFTR correctors. In vivo treatment with VX770 reduced sweat chloride concentration to non-CF levels, increased the number of CFTR-dependent sweat droplets, and induced a 6% absolute increase in predicted FEV1% after 27 weeks of treatment indicating the relevance of theratyping with patient-derived cells in CF

    Respiratory symptoms in children living near busy roads and their relationship to vehicular traffic: results of an Italian multicenter study (SIDRIA 2)

    Get PDF
    BACKGROUND: Epidemiological studies have provided evidence that exposure to vehicular traffic increases the prevalence of respiratory symptoms and may exacerbate pre-existing asthma in children. Self-reported exposure to road traffic has been questioned as a reliable measurement of exposure to air pollutants. The aim of this study was to investigate whether there were specific effects of cars and trucks traffic on current asthma symptoms (i.e. wheezing) and cough or phlegm, and to examine the validity of self-reported traffic exposure. METHODS: The survey was conducted in 2002 in 12 centers in Northern, Center and Southern Italy, different in size, climate, latitude and level of urbanization. Standardized questionnaires filled in by parents were used to collect information on health outcomes and exposure to traffic among 33,632 6-7 and 13-14 years old children and adolescents. Three questions on traffic exposure were asked: the traffic in the zone of residence, the frequency of truck and of car traffic in the street of residence. The presence of a possible response bias for the self-reported traffic was evaluated using external validation (comparison with measurements of traffic flow in the city of Turin) and internal validations (matching by census block, in the cities of Turin, Milan and Rome). RESULTS: Overall traffic density was weakly associated with asthma symptoms but there was a stronger association with cough or phlegm (high traffic density OR = 1.24; 95% CI: 1.04, 1.49). Car and truck traffic were independently associated with cough or phlegm. The results of the external validation did not support the existence of a reporting bias for the observed associations, for all the self-reported traffic indicators examined. The internal validations showed that the observed association between traffic density in the zone of residence and respiratory symptoms did not appear to be explained by an over reporting of traffic by parents of symptomatic subjects. CONCLUSION: Children living in zones with intense traffic are at higher risk for respiratory effects. Since population characteristics are specific, the results of validation of studies on self-reported traffic exposure can not be generalized

    Application of Data Fusion for Route Choice Modelling by Route Choice Driving Simulator

    No full text
    Modelling route choices is one of the most significant tasks in transportation models. Route choice models under Advanced Traveller Information Systems (ATIS) are often developed and calibrated by using, among other, Stated Preferences (SP) surveys. Different types of SP approaches can be adopted, alternatively based on Travel Simulators (TSs) or Driving Simulators (DSs). Here a pilot study is presented, aimed at setting up an SP-tool based on driving simulator developed at the Technical University of Bari. The obtained results are analysed in order to check the accordance with expectations in particular the results of application of data fusion technique are shown in order to explain how data collected by DSs, can be used to reduce the effect of choice of behaviour in unrealistic scenarios in TSs

    Missense mutations affecting Ca2+-coordination in GCAP1 lead to cone-rod dystrophies by altering protein structural and functional properties

    No full text
    Guanylate cyclase activating protein 1 (GCAP1) is a neuronal calcium sensor (NCS) involved in the early biochemical steps underlying the phototransduction cascade. By switching from a Ca2+-bound form in the dark to a Mg2+-bound state following light activation of the cascade, GCAP1 triggers the activation of the retinal guanylate cyclase (GC), thus replenishing the levels of 3',5'-cyclic monophosphate (cGMP) necessary to re-open CNG channels. Here, we investigated the structural and functional effects of three missense mutations in GCAP1 associated with cone-rod dystrophy, which severely perturb the homeostasis of cGMP and Ca2+. Substitutions affect residues directly involved in Ca2+ coordination in either EF3 (D100G) or EF4 (E155A and E155G) Ca2+ binding motifs. We found that all GCAP1 variants form relatively stable dimers showing decreased apparent affinity for Ca2+ and blocking the enzyme in a constitutively active state at physiological levels of Ca2+. Interestingly, by corroborating spectroscopic experiments with molecular dynamics simulations we show that beside local structural effects, mutation of the bidentate glutamate in an EF-hand calcium binding motif can profoundly perturb the flexibility of the adjacent EF-hand as well, ultimately destabilizing the whole domain. Therefore, while Ca2+-binding to GCAP1 per se occurs sequentially, allosteric effects may connect EF hand motifs, which appear to be essential for the integrity of the structural switch mechanism in GCAP1, and perhaps in other NCS proteins
    corecore