8 research outputs found

    Sequences of chr2 in HoxD mutant lines

    No full text
    These sequences are in silico generated sequences of every deletion allele used in Rodriguez-Carballo et al. 2017.<br>They were constructed from chr2 sequence of the mm10 version of the mouse genome and were modified according to the publication of the corresponding line and sanger sequencing of some breakpoints.<br

    Robotic Training System for Upper Limb Rehabilitation

    No full text
    Background: Robot-assisted therapy or exoskeleton is an active mechanical device that can be easily adjusted to fit a different patient limb length, and is able to coordinate and amplify movements. The aim of this study focuses on developing a robotic training system and quantification methods for upper limbs rehabilitation in clinic environments to be used in survivor stroke patients with motor disorders or loss of physical strength on one side of the body. Methods: From an integrated approach, a design of one exoskeleton is presented which allows patients perform complex movements in four degrees of freedom (DOF) rehabilitation system. The system is controlled by means of user interface developed with Lab view v8.6 software that supports control and user interaction with the exoskeleton; so it's possible for therapist to modify the patient routine including new movements and a number of repetitions in articulating joints of shoulder, elbow and wrist. On other hand system permits bio-feedback of electromyogram patient activity during rehabilitation sessions. Results: Biomechanical analyses and structure design, implementation of power systems, the development of the control system and user interface as well as its integration with the mechanical system is presented. Conclusions: A robot arm exoskeleton device with four DOF; able to develop complex, accurate and repetitive therapeutic routines for articulating joints of shoulder, elbow and wrist trough an interface is shown. The device permits to follow chronologically patient outcomes recording the electromyogram activity during rehabilitation progress.Introducci贸n: Un exoesqueleto se conceptualiza como un mecanismo estructural externo cuyos segmentos y articulaciones se corresponden con las del cuerpo humano y es capaz de coordinar y amplificar sus movimientos. El objetivo del trabajo se enfoca en desarrollar una tecnolog铆a de plataforma rob贸tica de asistencia y m茅todos de cuantifica-ci贸n para la rehabilitaci贸n motora de miembros superiores en ambientes cl铆nicos y ambulatorios para pacientes con afecciones motoras como resultado de enfermedades cerebro-vasculares. M茅todos: Se presenta a partir de una concepci贸n integradora el dise帽o del prototipo de un exoesqueleto que permite al paciente realizar movimientos combinados a partir de los cuatro grados de libertad que provee el dispositivo de rehabilitaci贸n. El sistema es controlado por medio de una interfaz de usuario desarrollada en Labview, que soporta el control e interacci贸n del usuario con el exoesqueleto, lo cual posibilita que el terapeuta puede modificar la rutina que debe realizar el paciente incluyendo nuevas trayectorias y el n煤mero de repeticiones a seguir por el exoesqueleto en las articulaciones de hombro, codo y mu帽eca. Adicionalmente, posibilita la retroalimentaci贸n visual de la actividad electromiogr谩fica del paciente durante la rehabilitaci贸n. Resultados: Se presenta el dise帽o mec谩nico de la armadura, la implementaci贸n de los sistemas de potencia, el desarrollo del sistema de control y de la interfaz de usuario, as铆 como su integraci贸n con el sistema mec谩nico. Conclusiones: Se desarrolla y pone en funcionamiento una avanzada plataforma rob贸tica capaz de desarrollar diversas rutinas terap茅uticas combinando 4 grados de libertad en hombro, codo y mu帽eca, capaz de controlar a trav茅s de la interfaz desarrollada desplazamientos regulados, exactos y repetitivos, as铆 como seguir cronol贸gicamente la evoluci贸n del paciente registrando la actividad mioel茅ctrica durante el proceso de rehabilitaci贸n

    Robotic Training System for Upper Limb Rehabilitation1

    Get PDF
    IntroIntroducci贸n: Un exoesqueleto se conceptualiza como un mecanismo estructural externo cuyos segmentos y articulaciones se corresponden con las del cuerpo humano y es capaz de coordinar y amplificar sus movimientos. El objetivo del trabajo se enfoca en desarrollar una tecnolog铆a de plataforma rob贸tica de asistencia y m茅todos de cuantificaci贸n para la rehabilitaci贸n motora de miembros superiores en ambientes cl铆nicos y ambulatorios para pacientes con afecciones motoras como resultados de enfermedades cerebrovasculares.M茅todos: Se presenta a partir de una concepci贸n integradora el dise帽o del prototipo de un exoesqueleto que permite al paciente realizar movimientos combinados a partir de los cuatro grados de libertad que provee el dispositivo de rehabilitaci贸n. El sistema es controlado por medio de una interfaz de usuario desarrollada en Labview que soporta el control e interacci贸n del usuario con el exoesqueleto, lo cual posibilita que el terapeuta puede modificar la rutina que debe realizar el paciente incluyendo nuevas trayectorias y el n煤mero de repeticiones a seguir por el exoesqueleto en las articulaciones de hombro, codo y mu帽eca. Adicionalmente, posibilita la retroalimentaci贸n visual de la actividad electromiogr谩fica del paciente durante la rehabilitaci贸n.Resultados: Se presenta el dise帽o mec谩nico de la armadura, implementaci贸n de los sistemas de potencia, el desarrollo del sistema de control y de la interfaz de usuario as铆 como su integraci贸n con el sistema mec谩nico.Conclusiones: Se desarrolla y pone en funcionamiento una avanzada plataforma rob贸tica capaz de desarrollar diversas rutinas terap茅uticas combinando 4 grados de libertad en hombro, codo y mu帽eca, capaz de controlar a trav茅s de la interfaz desarrollada desplazamientos regulados, exactos y repetitivos, as铆 como seguir cronol贸gicamente la evoluci贸n del paciente registrando la actividad mioel茅ctrica durante el proceso de rehabilitaci贸n.Background: Robot-assisted therapy or exoskeleton is an active mechanical device that can be easily adjusted to fit a different patient limb length, and is able to coordinate and amplify movements. The aim of this study focuses on developing a robotic training system and quantification methods for upper limbs rehabilitation in clinic environments to be used in survivor stroke patients with motor disorders or loss of physical strength on one side of the body.Methods: From an integrated approach, a design of one exoskeleton is presented which allows patients perform complex movements in four degrees of freedom (DOF) rehabilitation system. The system is controlled by means of user interface developed with Lab view v8.6 software that supports control and user interaction with the exoskeleton; so it鈥檚 possible for therapist to modify the patient routine including new movements and a number of repetitions in articulating joints of shoulder, elbow and wrist. On other hand system permits bio- feedback of electromyogram patient activity during rehabilitation sessions.Results: Biomechanical analyses and structure design, implementation of power systems, the development of the control system and user interface as well as its integration with the mechanical system is presented.Conclusions: A robot arm exoskeleton device with four DOF; able to develop complex, accurate and repetitive therapeutic routines for articulating joints of shoulder, elbow and wrist trough an interface is shown. The device permits to follow chronologically patient outcomes recording the electromyogram activity during rehabilitation progress.聽Background: Robot-assisted therapy or exoskeleton is anactive mechanical device that can be easily adjusted to fita different patient limb length, and is able to coordinateand amplify movements. The aim of this study focuses ondeveloping a robotic training system and quantificationmethods for upper limbs rehabilitation in clinic environmentsto be used in survivor stroke patients with motordisorders or loss of physical strength on one side of thebody. Methods: From an integrated approach, a design ofone exoskeleton is presented which allows patients performcomplex movements in four degrees of freedom (DOF)rehabilitation system. The system is controlled by means ofuser interface developed with Lab view v8.6 software thatsupports control and user interaction with the exoskeleton;so it鈥檚 possible for therapist to modify the patient routineincluding new movements and a number of repetitions inarticulating joints of shoulder, elbow and wrist. On otherhand system permits bio-feedback of electromyogrampatient activity during rehabilitation sessions. Results:Biomechanical analyses and structure design, implementationof power systems, the development of the controlsystem and user interface as well as its integration withthe mechanical system is presented. Conclusions: A robotarm exoskeleton device with four DOF; able to developcomplex, accurate and repetitive therapeutic routines forarticulating joints of shoulder, elbow and wrist trough aninterface is shown. The device permits to follow chronologicallypatient outcomes recording the electromyogramactivity during rehabilitation progress

    Robotic Training System for Upper Limb Rehabilitation1

    No full text
    IntroIntroducci贸n: Un exoesqueleto se conceptualiza como un mecanismo estructural externo cuyos segmentos y articulaciones se corresponden con las del cuerpo humano y es capaz de coordinar y amplificar sus movimientos. El objetivo del trabajo se enfoca en desarrollar una tecnolog铆a de plataforma rob贸tica de asistencia y m茅todos de cuantificaci贸n para la rehabilitaci贸n motora de miembros superiores en ambientes cl铆nicos y ambulatorios para pacientes con afecciones motoras como resultados de enfermedades cerebrovasculares.M茅todos: Se presenta a partir de una concepci贸n integradora el dise帽o del prototipo de un exoesqueleto que permite al paciente realizar movimientos combinados a partir de los cuatro grados de libertad que provee el dispositivo de rehabilitaci贸n. El sistema es controlado por medio de una interfaz de usuario desarrollada en Labview que soporta el control e interacci贸n del usuario con el exoesqueleto, lo cual posibilita que el terapeuta puede modificar la rutina que debe realizar el paciente incluyendo nuevas trayectorias y el n煤mero de repeticiones a seguir por el exoesqueleto en las articulaciones de hombro, codo y mu帽eca. Adicionalmente, posibilita la retroalimentaci贸n visual de la actividad electromiogr谩fica del paciente durante la rehabilitaci贸n.Resultados: Se presenta el dise帽o mec谩nico de la armadura, implementaci贸n de los sistemas de potencia, el desarrollo del sistema de control y de la interfaz de usuario as铆 como su integraci贸n con el sistema mec谩nico.Conclusiones: Se desarrolla y pone en funcionamiento una avanzada plataforma rob贸tica capaz de desarrollar diversas rutinas terap茅uticas combinando 4 grados de libertad en hombro, codo y mu帽eca, capaz de controlar a trav茅s de la interfaz desarrollada desplazamientos regulados, exactos y repetitivos, as铆 como seguir cronol贸gicamente la evoluci贸n del paciente registrando la actividad mioel茅ctrica durante el proceso de rehabilitaci贸n.Background: Robot-assisted therapy or exoskeleton is an active mechanical device that can be easily adjusted to fit a different patient limb length, and is able to coordinate and amplify movements. The aim of this study focuses on developing a robotic training system and quantification methods for upper limbs rehabilitation in clinic environments to be used in survivor stroke patients with motor disorders or loss of physical strength on one side of the body.Methods: From an integrated approach, a design of one exoskeleton is presented which allows patients perform complex movements in four degrees of freedom (DOF) rehabilitation system. The system is controlled by means of user interface developed with Lab view v8.6 software that supports control and user interaction with the exoskeleton; so it鈥檚 possible for therapist to modify the patient routine including new movements and a number of repetitions in articulating joints of shoulder, elbow and wrist. On other hand system permits bio- feedback of electromyogram patient activity during rehabilitation sessions.Results: Biomechanical analyses and structure design, implementation of power systems, the development of the control system and user interface as well as its integration with the mechanical system is presented.Conclusions: A robot arm exoskeleton device with four DOF; able to develop complex, accurate and repetitive therapeutic routines for articulating joints of shoulder, elbow and wrist trough an interface is shown. The device permits to follow chronologically patient outcomes recording the electromyogram activity during rehabilitation progress.聽Background: Robot-assisted therapy or exoskeleton is anactive mechanical device that can be easily adjusted to fita different patient limb length, and is able to coordinateand amplify movements. The aim of this study focuses ondeveloping a robotic training system and quantificationmethods for upper limbs rehabilitation in clinic environmentsto be used in survivor stroke patients with motordisorders or loss of physical strength on one side of thebody. Methods: From an integrated approach, a design ofone exoskeleton is presented which allows patients performcomplex movements in four degrees of freedom (DOF)rehabilitation system. The system is controlled by means ofuser interface developed with Lab view v8.6 software thatsupports control and user interaction with the exoskeleton;so it鈥檚 possible for therapist to modify the patient routineincluding new movements and a number of repetitions inarticulating joints of shoulder, elbow and wrist. On otherhand system permits bio-feedback of electromyogrampatient activity during rehabilitation sessions. Results:Biomechanical analyses and structure design, implementationof power systems, the development of the controlsystem and user interface as well as its integration withthe mechanical system is presented. Conclusions: A robotarm exoskeleton device with four DOF; able to developcomplex, accurate and repetitive therapeutic routines forarticulating joints of shoulder, elbow and wrist trough aninterface is shown. The device permits to follow chronologicallypatient outcomes recording the electromyogramactivity during rehabilitation progress

    The HoxD

    No full text
    The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos , we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context

    Towards Multimodal Equipment to Help in the Diagnosis of COVID-19 Using Machine Learning Algorithms

    No full text
    COVID-19 occurs due to infection through respiratory droplets containing the SARS-CoV-2 virus, which are released when someone sneezes, coughs, or talks. The gold-standard exam to detect the virus is Real-Time Polymerase Chain Reaction (RT-PCR); however, this is an expensive test and may require up to 3 days after infection for a reliable result, and if there is high demand, the labs could be overwhelmed, which can cause significant delays in providing results. Biomedical data (oxygen saturation level鈥擲pO2, body temperature, heart rate, and cough) are acquired from individuals and are used to help infer infection by COVID-19, using machine learning algorithms. The goal of this study is to introduce the Integrated Portable Medical Assistant (IPMA), which is a multimodal piece of equipment that can collect biomedical data, such as oxygen saturation level, body temperature, heart rate, and cough sound, and helps infer the diagnosis of COVID-19 through machine learning algorithms. The IPMA has the capacity to store the biomedical data for continuous studies and can be used to infer other respiratory diseases. Quadratic kernel-free non-linear Support Vector Machine (QSVM) and Decision Tree (DT) were applied on three datasets with data of cough, speech, body temperature, heart rate, and SpO2, obtaining an Accuracy rate (ACC) and Area Under the Curve (AUC) of approximately up to 88.0% and 0.85, respectively, as well as an ACC up to 99% and AUC = 0.94, respectively, for COVID-19 infection inference. When applied to the data acquired with the IMPA, these algorithms achieved 100% accuracy. Regarding the easiness of using the equipment, 36 volunteers reported that the IPMA has a high usability, according to results from two metrics used for evaluation: System Usability Scale (SUS) and Post Study System Usability Questionnaire (PSSUQ), with scores of 85.5 and 1.41, respectively. In light of the worldwide needs for smart equipment to help fight the COVID-19 pandemic, this new equipment may help with the screening of COVID-19 through data collected from biomedical signals and cough sounds, as well as the use of machine learning algorithms
    corecore