157 research outputs found

    CMOS current-mode chaotic neurons

    Get PDF
    This paper presents two nonlinear CMOS current-mode circuits that implement neuron soma equations for chaotic neural networks, and another circuit to realize programmable current-mode synapse using CMOS-compatible BJT's. They have been fabricated in a double-metal, single-poly 1.6 /spl mu/m CMOS technology and their measured performance reached the expected function and specifications. The neuron soma circuits use a novel, highly accurate CMOS circuit strategy to realize piecewise-linear characteristics in the current-mode domain. Their prototypes obtain reduced area and low voltage power supply (down to 3 V) with clock frequency of 500 kHz. As regard to the synapse circuit, it obtains large linearity and continuous, linear, weight adjustment by exploration of the exponential-law operation of CMOS-BJT's. The full accordance observed between theory and measurements supports the development of future analog VLSI chaotic neural networks to emulate biological systems and advanced computation

    Integrated chaos generators

    Get PDF
    This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.Comisión Interministerial de Ciencia y Tecnología 1FD97-1611(TIC)European Commission ESPRIT 3110

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Switched-Current Chaotic Neurons

    Get PDF
    The Letter presents two nonlinear CMOS current-mode circuits that implement neuron soma equations for chaotic neural networks. They have been fabricated in a double-metal, single-poly 1.6µm CMOS technology. The neuron soma circuits use a novel, highly accurate CMOS circuit strategy to realise piecewise-linear characteristics in the current-mode domain. Their prototypes obtain reduced area and low voltage power supply (down to 3V) with a clock frequency of 500 kHz

    Design considerations for integrated continuous-time chaotic oscillators

    Get PDF
    This paper presents an optimization procedure to choose the chaotic state equation which is best suited for implementation using Gm-C integrated circuit techniques. The paper also presents an analysis of the most significant hardware nonidealities of Gm-C circuits on the chaotic operation-the basis to design robust integrated circuits with reproducible and easily controllable behavior. The techniques in the paper are illustrated through a circuit fabricated in 2.4-/iin double-poly technology.Comisión Interministerial de Ciencia y Tecnología TIC 96-1392-CO2-

    Offset-calibration with Time-Domain Comparators Using Inversion-mode Varactors

    Get PDF
    This paper presents a differential time-domain comparator formed by two voltage controlled delay lines, one per input terminal, and a binary phase detector for comparison solving. The propagation delay through the respective lines can be adjusted with a set of digitally-controlled inversion-mode varactors. These varactors provide tuning capabilities to the comparator; feature which can be exploited for offset calibration. This is demonstrated with the implementation of a differential 10-bit SAR-ADC. The design, fabricated in a 0.18μm CMOS process, includes an automatic mechanism for adjusting the capacitance of the varactors in order to calibrate the offset of the whole converter. Correct functionality was measured in all samples.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N0001414135

    Transformer based front-end for a low power 2.4 GHz transceiver

    Get PDF
    A low power transceiver architecture for the 2.4 GHz ISM band using a 1.0 V supply is presented. It employs a transformer to convert the 100 Ω antenna impedance to almost 1 kΩ and so facilitates a low power transmitter and receiver. The simulated post-layout output power of the differential class-E power amplifier is 2.0 dBm with a drain efficiency of 28.4%. The direct-conversion receiver achieves a very low power consumption of 420 μW and a noise figure of 15.0 dB.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Accurate Settling-Time Modeling and Design Procedures for Two-Stage Miller-Compensated Amplifiers for Switched-Capacitor Circuits

    Get PDF
    We present modeling techniques for accurate estimation of settling errors in switched-capacitor (SC) circuits built with Miller-compensated operational transconductance amplifiers (OTAs). One distinctive feature of the proposal is the computation of the impact of signal levels (on both the model parameters and the model structure) as they change during transient evolution. This is achieved by using an event-driven behavioral approach that combines small- and large-signal behavioral descriptions and keeps track of the amplifier state after each clock phase. Also, SC circuits are modeled under closed-loop conditions to guarantee that the results remain close to those obtained by electrical simulation of the actual circuits. Based on these models, which can be regarded as intermediate between the more established small-signal approach and full-fledged simulations, design procedures for dimensioning SC building blocks are presented whose targets are system-level specifications (such as ENOB and SNDR) instead of OTA specifications. The proposed techniques allow to complete top-down model-based designs with 0.3-b accuracy.Ministerio de Educación y Ciencia TEC2006-03022Junta de Andalucía TIC-0281

    Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation

    Get PDF
    This paper presents an integer-based digital processor for the calculation of phase synchronization between two neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters, and adders. The processor, fabricated in a 0.18- μ m CMOS process, only occupies 0.05 mm 2 and consumes 15 nW from a 0.5 V supply voltage at a signal input rate of 1024 S/s. These low-area and low-power features make the proposed processor a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for assessing the patterns of correlated activity in neural assemblies through the evaluation of functional connectivity maps.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014-19-1-215

    Artifact-Aware Analogue/Mixed-Signal Front-Ends for Neural Recording Applications

    Get PDF
    This paper presents a brief review of techniques to overcome the problems associated with artifacts in analog frontends for neural recording applications. These techniques are employed for handling Common-Mode (CM) Differential-Mode (DM) artifacts and include techniques such as Average Template Subtraction, Channel Blanking or Blind Adaptive Stimulation Artifact Rejection (ASAR), among others. Additionally, a new technique for DM artifacts compression is proposed. It allows to compress these artifacts to the requirements of the analog frontend and, afterwards, it allows to reconstruct the whole artifact or largely suppress it.Ministerio de Economía y Empresa TEC2016-80923-
    corecore