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This paper presents two nonlinear CMOS current-mode 
circuits that implement neuron soma equations for chaotic 
neural networks, and another circuit to realize programmable 
current-mode synapse using CMOS-compatible BJT's. They 
have been fabricated in a double-metal, single-poly 1.6pm 
CMOS technology and their measured performance reached 
the expected function and specifications. The neuron soma 
circuits use a novel, highly accurate CMOS circuit strategy to 
realize piecewise-linear characteristics in current-mode 
domain. Their prototypes obtain reduced area and low 
voltage power supply (down to 3v) with clock frequency of 
5OOkHz. As regard to the synapse circuit, it obtains large 
linearity and continuous, linear, weight adjustment by 
explotation of the exponential-law operation of 
CMOS-BJT's. The full accordance observed between theory 
and measurements supports the development of future analog 
VLSI chaotic neural networks to emulate biological systems 
and advanced computation. 

INTRODUCTION 

Recent studies on real nerve membranes in 
neurophysiological experiments have shown that the 
dynamical behavior of biological neurons are much more 
complex (including chaotic response) than that exhibited by 
conventional models used in artificial networks, typically 
represented by simple threshold or sigmoid elements [l], [2]. 
Consequently, in the last years, new schemes of artificial 
neural networks have emerged whose purpose is to more 
realistically emulate the chaotic responses experimentally 
observed from biological systems. One of the simplest 
chaotic neural networks has been reported in [3], and 
constitutes a modification of the Nagumo-Sat0 model [4], 
where instead of following an all-or-none law for the action 
potential, modelled by an unit step output function U(*), the 
neuron shows a continuously graded stimulus-response 
curve, represented by a non-linear function Am). The model 
in [3], illustrated in Fig. 1, is defined by the following 
finite-difference equations: 

ni(n + 1) = kxi(n) - a&(n)) +Ai@) 
, n = 0, 1, ... (1) y i (n  + 1) =&(n + I ) )  

wherex,(n+l) and y,(n+l) are the internal state and the output 
of the ith chaotic neuron at the discrete time n+l, respec- 
tively; a and k are the scaling and damping factors of refrac- 
toriness (residual effect of a neuron once fired), respectively; 
and A,(n) is the input excitation at the instant n, given by 

Figure 1 Analog computer concept for the chaotic neuron 
circuit. The nonlinear block is given by g(x) = kr - a x ) ,  

according to (1). 

M N 

Ai(n)  = Wjjyj(n)  + Vj,Ij(n) - Bi (2 )  
j =  1 j =  1 

where the first term computes the influence of the A4 neurons 
driving the ith neuron; the second, the excitation from the N 
external inputs, 4; and 0, is the threshold of the ith neuron. 
Lastly,A-) constitutes the neuron output function represented 
by the piecewise-linear model 

where E is a positive number defining the steepness of the 
function. 

Many studies on chaotic neural networks in general, and 
using the previous model in particular, reveal that such 
networks not only serve as an experimental vehicle in the 
study of sensory nerve systems, but also provide the means 
for important engineering applications. In this sense, chaotic 
neural networks have been proposed to solve difficult 
optimization problems [ 5 ] ,  [6] ; for dynamical associative 
pattem classification [7]; and for signal detection and 
classgcation in noisy environments [8], and it is foreseeable 
that new applications will arise in the near future. 

In spite of the strong economical interest involving these 
applications, few up-to-date physical implementations of 
chaotic neurons have been proposed. Thus, it is advisable to 
give circuit realizations of these models. Furthermore, due to 
the technological trend towards system integration, these 
circuits must be well-suited for VLSI, and, if possible, 
compatible with standard low cost CMOS technologies. 

The purpose of this communication is to provide 
monolithic implementations of the discrete-time chaotic 
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neuron described in (l), as well as for the Nagumo-Sato 
model that, previously stated, substitutes the nonlinear 
function in (3) by a unit step U(*). Also, a synapse circuit 
with continuous, linear programmability which employs 
CMOS-compatible BJT's is reported. 

CURRENT MODE IMPLEMENTATIONS 
Current-mode techniques have been employed to 

implement both neurons, following the conceptual diagram 
shown in Fig.1. Summation is easily realized exploiting 
KCL. The delay operation can be realized as a cascade of 
two track-and-hold switched-current stages, as proposed by 
Hughes et al. [9]. Fig. 2 shows the schematics for this block. 
Nonlinearities have been achieved using a novel, highly 
accurate CMOS circuit strategy to realize PL characteristics 
in current-mode domain. It is based on the rectifying 
characteristics of the current switch [lo], which provides 
very high resolution and virtually zero current offset, not 
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Figure 2 Current-mode track and hold circuit. 
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Nagumo-Sato Model 
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Figure 3 Piecewise linear mapping 
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circuits for the neurons. 

influenced by transistor mismatches (indeed, minimum size 
transistors were used in both prototypes). Fig. 3 shows the 
corresponding schematics for both PL functions. Current 
amplifiers can be implemented by properly ratioed bilateral 
current mirrors. 

Firstly, let us consider implementation of the nonlinear 
block, g(-), for the Nagumo-Sat0 model, according to the 
concept of Fig.1. Fig.3(a), which consists of two current 
sources (realized in practice by current mirror output 
branches), four transistors and two digital inverters, shows a 
conceptual schematic for the realization of the PL 
characteristics of Fig.3(b). Transistors MCSn and M,, in 
Fig.3(a) operate as a current-controlled-current-switch, wkle 
transistors MVSn and MVSp operate as voltage-controlled 
current switches. Any positive input current increases the 
input voltage, turning Qs device ON, and since both 
devices in the current switci have the same gate voltage, 
MCSn OFF. Simultaneously, the voltage at the second 
inverter output evolves to the high logic state, turning Mvs,, 
ON and Mvs OFF. Thus, a current h ( n )  - a  (obtained 
by KCL at noBe NI) is directed to the output node through 
the transistor MvSn -- the right-hand piece of Fig.3(b) is 
implemented in this manner. Similarly, negative input 
currents turn MCSn and MVsp ON, so that a current kx(n) + 
a circulates through Mvsp to the output node. The output 
response of the neuron can be taken from the voltage at the 
output of the inverter IN2 which swings from rail to rail 
depending upon the sign of the input current, thus resembling 
the required unit step function in voltage mode. Obviously 
this binary signal must be combined with analog switches 
and current sources for properly driving other neurons in the 
network. 

Since current discrimination in the proposed circuit 
relies on integration function performed at the input node, 
resolution is very high, not influenced by transistor 
mismatches (measurements from the CMOS prototype 
display resolution of 12pA's). Operation speed is also very 
high, limited mainly by nonlinear transients in the transistors 
that implement the current sources used to drive nodes NI 
and N2. Also, the feedback created by inverter IN1 yields 
significant reduction of the dead-zone exhibited by the 
driving point characteristics measured at the input node, that 
is proportional to (VTn + IVTp() / Ai",, where VTn and VTp are 
the threshold voltages for the transistors and A,, is the 
inverter DC gain. This is an appealing feature that enables 
reduction of interstage loading errors caused by finite 
equivalent MOS transistors Early voltages. 

Concerning the implementation of the PL characteristic 
shown in Fig. 3(d) for the Aihara model, Fig. 3(c) shows the 
corresponding schematic. The current switches, together 
with the current sources, are used to discriminate the input 
current into three paths according if x(n) is lower than -E, 
greater than E, or is comprised between both values. In the 
two first cases, the paths are routed to the same node and 
amplified by k ,  while if x(n)E [-E, E] the current is amplified 
by -y, where y = WE - k,  according to (1) and (3). The output 
of the neuron can be easily taken in this case by replication 
and scaling the output current of the amplifier with gain -y. 
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PROGRAMMABILITY ISSUES FOR CURRENT 
MODE BLOCKS 

In current-mode domain two different approaches to 
programmability can be considered depending on the nature 
of the associated controlling signals: discrete 
programmability, where controlling signals are digital, and 
continuous programmability, where controlling signals are 
analog. Discrete programmability can be incorporated in a 
very simple way, by analog multiplexing of current 
contributions from different mirrors. These mirrors can 
either implement fixed templates (with application, for 
instance, in cases where well-defined tasks must be 
sequentially performed), or be binary-weighted (for more 
general application). Discrete programmability provides 
ease of controllability and accurate results, at the cost of a 
strong area penalty. 

For reduced area and continuous weight adjustment, 
analog programmability should be considered. A simple way 
to achieve analog programmability is using tunable 
transconductors, as the one shown in Fig. 4(a). Fig. 4(b) 
shows a programmable current mirror using this 
transconductor. Two different situations arise depending on 
whether transistors operate in weak or in strong inversion. 
Analysis for both operating conditions shows the following, 

- i q  = 1s 21 = 2 (4) 

i. I n  strong P l l B l  'In weak 'El 

As can be seen, the dependence is linear for weak 
inversion; hence, this latter case provides larger weight 
adjustment ranges. It is illustrated in Fig. 5,  showing the 
current weight as a function of IB2/IB for different values of 
IB,/I,, where IB  is a normalization factor of value lOnA for 
weak inversion (Fig. 5(a)) and 50pA for strong inversion 
(Fig. 5(b)). Also, nonlinearity cancellation is exact in weak 
inversion due to the exponential nature of current to voltage 
characteristics, while it is only approximate for strong 
inversion: nonlinearity in the weak inversion case is less than 
I %  up to io=IB2, while the corresponding value for strong 
inversion is i,=O.13lB2. Drawbacks of weak inversion are 
low accuracy, due to mismatch, and reduced speed. These 
can be overcome by using CMOS compatible lateral BJTs 
[ 1 I], which exhibit exponential feature for larger current 
ranges, and with excellent matching properties [ 121. 

EXPERIMENTAL RESULTS 
Both neurons have been fabricated in a double-metal, 

single-poly 1.6pm CMOS technology. Fig. 6 shows the 
corresponding microphotographs. Some extra 
miscellaneous circuitry has been added to both circuits to 
enable testing the output current and the possibility to either 
open or close the feedback loop. Dummy switches were also 
added to reduce the influence of clock feedthrough. All 
current amplifiers were binary-weighted for the issue of 
programmability. Bias current I, for the delay stages was set 

(4 (b) 

Figure 4 (a)Tunable transconductor. (b) Programmable 
current mirror. 
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Figure 5 Weight (iJih) variation with IBZIIB for different 
values of I B ~ I l B  in Fig. 4(b). 

(a) Transconductors operating in weak inversion I - 10nA. 
(b) 'kansconductors operating in strong inversio;, 50pA. 

to 50pA. Total area occupation is 0.096mmL for the 
Nagumo-Sat0 neuron, and 0.225mm2 for the Aihara neuron. 

Fig. 7 shows the characteristics measured in open loop 
for both circuits, using the HP41 45 semiconductor analyzer, 
with a rail-to rail power supply of only 3v. For the 
Nagumo-Sat0 neuron (Fig.7(a)), a = 20pA, k = 1 and the 
input ranges from -20pA to 20pA. For the Aihara neuron 
(Fig.7(b)), E = 2pA, y =  10 , k = 1 and the input sweeps 
from -1OpA to IOW. In both prototypes deviation from 
linearity is less than 0.2%, and the measured current offset 
amounts to few PA'S. 



(a) Nagumo-Sato Model (b) Aihara Model 
Figure 6 Microphotographs of the prototypes. 
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Figure 7 Measured open-loop characteristics. 

Fig. 8 shows the experimental bifurcation trees for both 
neurons, when the damping factor k = 0.5 and the neuron 
excitation A, taken as the bifurcation parameter, vanes from 
-20pA to 2 0 ~ A .  All other parameters were fixed to the 
values previously cited. Clock frequency was set to 500kHz. 

All these measurements are in full accordance with the 
theoretical results. Also, given the reduced area, as well as 
operating with only 3v power supply, we believe both 
neuron implementations are very appropriate for high 
density chaotic neural networks on a single chip. 
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