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Abstract—This paper presents a brief review of techniques to
overcome the problems associated with artifacts in analog front-
ends for neural recording applications. These techniques are
employed for handling Common-Mode (CM) Differential-Mode
(DM) artifacts and include techniques such as Average Template
Subtraction, Channel Blanking or Blind Adaptive Stimulation
Artifact Rejection (ASAR), among others. Additionally, a new
technique for DM artifacts compression is proposed. It allows to
compress these artifacts to the requirements of the analog front-
end and, afterwards, it allows to reconstruct the whole artifact
or largely suppress it.

Index Terms—Neural Recording; Neural prosthesis, Brain Ma-
chine Interfaces; Analog Front-End; Artifacts; Artifacts-Aware;
Analog Front-Ends; Mixed-signal Front-Ends; Dynamic Range;
ASAR;

I. INTRODUCTION

Neural signal recording is an essential function in modern
prosthesis for the treatment of neurological disorders such
as epilepsy, Parkinson or Alzheimer’s disease [1]. Further,
neural recorders play also a prominent role in BMIs (Brain-
Machine Interfaces) in which conveniently instrumented de-
vices can be solely handled through the information collected
and processed from the brain [2]. Some of these applications
require the implementation of a closed-loop sensor/actuator
mechanism to interact with the brain and, hence, neural
recorders have to co-exist with stimulators, often integrated
on the same silicon die.

Neural stimulation typically induces strong reactions in the
tissue. This not only corrupts the captured neural signals but
it may also lead to the saturation of the recording front-end.
Hence, in these closed-loop devices, neural recording systems
not only should exhibit low noise, low power and low area
occupation [1], [3] but they should also render tolerant to the
large artifacts generated by the stimulation pulses. Together
with neural stimulation, other large interfering signals may
also contaminate recording, for instance, by sudden alterations
of the tissue-electrode interface due to motions [3], [4]. As
long as these interferes have similar effect on the recorded
data as stimulation artifacts, in this paper, we will regard both
cases as artifacts and simply distinguish between Common-
Mode (CM) and Differential-Mode (DM) artifacts, depending
on the kind of perturbation received by the neural signal.

Fig. 1 illustrates the amplitude and frequency ranges of
neural signals (only Local Field Potentials (LFP) and Action
Potentials (AP) are shown) as compared to CM and DM
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Fig. 1. Specifications of recorded neural signals.

artifacts [3]. As can be seen, while frequencies overlap,
amplitude differences may be orders of magnitude different.

The use of fully-differential structures with large Common-
Mode Rejection Ratio (CMRR) allows to reduce the impact
of CM artifacts. However, residual CM components in the
differential signal path may still degrade system performance.
To cope with this problem, continuous- [3] and discrete-time
[5] solutions applied at the input of the recording front-
end have been proposed. DM artifacts are typically smaller
than CM artifacts, however, their effect is more deleterious
because they superposes on the neural signal component which
conveys useful information. DM artifacts could be handled by
increasing the input dynamic range of the neural recorder and
raising the resolution of the following ADC so as to convert
both neural signals and artifacts. For example, the resolution of
an ADC intended for LFP recording should be increased from
10-12 bits to some 14-15 bits if artifacts have to be covered
as well [6]. Obviously, this would significantly increase the
area and power consumptions of the recording system and,
for this reason, other artifact-aware front-end topologies have
been recently proposed. In this work, we will make a brief
review of these artifact-aware algorithms and structures and
analyze their pros and cons. Additionally, we will propose a
new algorithm to compress and reconstruct DM artifacts.

The paper is organized as follows. Section II and III present,
respectively, some relevant DM artifact-aware and suppression
techniques. Section IV proposes a new algorithm for DM
artifacts compression and illustrates its performance. Finally,
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Fig. 2. Artifacts-aware techniques. (a) Channel blanking technique. (b) Signal
Folding. (c) PGA tuning. (d) Delta Encoding.

Section V concludes the paper.

II. DM ARTIFACTS-AWARE TECHNIQUES

Artifact-aware topologies are aimed to relax the performance
requirements of the neural recording system in terms of input
dynamic range and/or converter resolution even when artifacts
contaminate neural signals. Some of these topologies are
analyzed below.

A. Channel Blanking

Fig. 2 (a) illustrates the basic structure of the channel blanking
technique [7]. The operation principle consists in disconnect-
ing the recording channel from the tissue when an artifact is
present. This works when intentional stimulations are applied
to the brain but it is useless for unpredictable interferers. Fur-
ther, the technique carries out a complete loss of information
while the recording channel is disconnected. For this reason,

data reconstruction with interpolation techniques have been
proposed [8]. Another potential problem is the long recovery
time after blanking unless proper techniques are adopted [9],
[10].

B. Signal Folding

Another technique employed to avoid saturation in the front-
end is signal folding [11], [12]. The operation principle is
shown in Fig. 2 (b). In this technique, the output voltage of the
amplifier is compared with a fixed threshold voltage through
a pair of comparators. If the magnitude of the output voltage
is higher than this threshold a pulse resets the output node of
the front-end amplifier to the nominal common-mode level.
This way, saturation is avoided and the ADC requirements are
relaxed.

This topology shows two main shortcomings. On the one
hand, resetting the amplifier implicitly involves a loss of
information. On the other, samples after resetting are invalid
due to the slow settling time of the amplifier.

C. PGA Tuning

In order to avoid saturation states due to artifacts, the gain of a
programmable gain amplifier (PGA) can be set [1], as shown
in Fig. 2 (c). In this technique, a capacitor bank is employed to
set the gain of the PGA. The capacitor bank is controlled by a
digital circuit which, depending on the amplitude of the signal
at the output of the ADC, performs a dynamic adjustment of
the amplification. This method allows the signal to fit in the
ADC swing. Then, depending on this amplification, the signal
is scaled and reconstructed in digital domain.

This method operates for all kind of DM artifacts, as no
disabling control is needed, and it may even address other
recording problems such as the long-term degradation of
the tissue-electrode interface. However, there are two main
problems associated with this technique. First, it requires the
PGA can be tuned over a wide amplification range, and it
increases the complexity of the digital reconstruction circuit,
which must scale the ADC output according to the gain value
along the signal path. Second, the input-referred noise of the
analog front-end and the PGA bandwidth changes with the
gain setting.

D. Delta Encoding

Delta Encoding is a technique intended for reducing the ADC
dynamic range requirements [5]. The operation principle relies
on tracking differences between successive samples at Nyquist
rate (delta signals). This inherently places a high-pass pole at
half the sampling frequency which compensates the typical
1/f spectral distribution of LFPs [13], thus, reducing the
dynamic range requirements of the front-end. Further, large
DM artifacts can be tolerated if they are slow enough.

Delta signals are obtained at the input of the front-end
amplifier by subtracting the current and previous samples,
this latter regenerated through a Digital to Analog Converter
(DAC) from digital domain (see Fig. 2 (d)). In order to
reconstruct the signal, a scaled version of the DAC input



and the ADC output are added together. The scaling factor
M has to be calibrated to compensate for DAC transfer
function nonidealities. As a drawback, the amplifier must have
a wide bandwidth so that settling is possible between adjacent
channels, potentially compromising noise performance due to
aliasing and increasing power consumption.

A straightforward extension of Delta Encoding, which fol-
lows similar operation principles, relies on sigma-delta modu-
lation and oversampling techniques for increasing the recorder
dynamic range [14]. Examples using these topologies can be
found in [14]-[17].

IIT. DM ARTIFACTS-SUPPRESSION TECHNIQUES

The techniques discussed in the previous section are mainly
intended for avoiding saturation in the neural recorders. How-
ever, neural activity, if not destroyed, still remains embedded
in the artifact. For this reason, techniques able to suppress the
artifact and recover the overlapped information are needed.
These suppression techniques can use mixed-signal feedback
or digital post-processing.

A. Artifacts Suppression Feedback Front-Ends

They are represented in Fig. 3 (a). In this topology, artifact
cancellation is performed at the input of the recorder amplifier,
thus, avoiding the use of high resolution ADCs. However, this
is at the expense of some extra noise contribution by the DAC
to the overall input-referred noise of the recorder. To palliate
this shortcoming, oversampling techniques can be used [18].
Furthermore, the clock of the circuit has to be fast enough
to detect the artifact and inject the correction signal before
the artifact saturate the signal path. Two of most significant
artifacts suppression feedback techniques are the averaged
template subtraction [19] and the adaptive stimulation filter
[4].

In the first case, an artifact template is subtracted from the
input of the recorder every time a new neural stimulation
cycle turns on [19]. The template is calculated by means
of a learning algorithm, based on recordings obtained from
previous stimulation cycles. After template subtraction, a
residual artifact waveform may persist in the signal path.
To further enhance the artifact suppression, a post-processing
digital circuit can be used to calculate the average amplitude
of such residue and subtract it from the signal.

One of the main drawbacks of this approach is the high
computational complexity cost and the need for offline training
required for both generating the templates and calculating the
artifact residues. Further, if there are substantial differences
between the artifact and the stored template, the resulting
residue can eventually saturate the signal path, unless a wide
input range amplifier is used.

In the second case, an adaptive stimulation filter recreates
the response of the neural tissue in order to subtract the artifact
from the neural signal [4]. The approach takes advantage of
the close correlation between the stimulation pulse, e(t), and
the neural tissue response, b(t). Denoting by s(¢) and a(t)
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Fig. 3. Artifacts-suppression techniques. (a) Artifacts suppression feedback
front-ends. (b) Post-processing artifacts suppression front ends.

the unaffected neural signal and the artifact, respectively, the
recorded signal at instant n can be expressed as:

y(n) = s(n) + a(n) = s(n) + b(n) xe(n) (1)

The objective is to generate a signal a(n) = b(n)  e(n)
such that, when subtracted to the input, gives an estimate

5(n) = y(n) = a(n) = s(n) + [b(n) = b(n)] xe(n) ~ (2)

close to the original unaffected neural signal. The recreated
response I;(n) can be obtained through an adaptive filter
where coefficients are updated by a Least Mean Square (LMS)
learning algorithm [4]. This algorithm uses a steepest gradient
descent approach to minimize errors in $(n). A simplified
version of the LMS algorithm, the sign-sign LMS, facilitates
hardware implementation by using a sign-bit signal represen-
tation as follows [20]:

b(n) = b(n — 1) + p* [e(n) x sgn(3(n))] 3)
B. Post-Processing Artifacts Suppression Front-Ends

In these structures, artifacts are suppressed in digital domain
with no feedback to the recorder front-end (Fig. 3 (b)). This
avoids any degradation on the noise performance, although, it
demands a high dynamic range for the mixed-signal circuitry.

Herein, we will briefly review the blind adaptive stimulation
artifact rejection (ASAR) proposed in [6], as a representative
example of post-processing cancellation. Interestingly enough,
the approach works with any arbitrary artifact with no prior
knowledge about its structural and temporal shape. It relies on
obtaining an artifact template u(n) from an adjacent electrode.
This template is detected when a threshold value, obtained
from a previous statistics calculation phase in the absence of
artifacts, is exceeded. If an artifact is detected in the recorded
signal y(n), the template u(n) is applied to a Normalized
Least Mean Square (NMLS) adaptive filter which updates the
weighting factor, w(n), as follows:

D+t u(n) y(n)

T + e —u(n)w(n—1)]

“

w(n) =
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Fig. 4. Architecture of proposed DM artifacts compression technique.

where g is the algorithm step-size and € is a small positive
parameter. To obtain a clean neural signal §(n), the estimated
artifact is subtracted from the measured signal:

5(n) = y(n) — u(n)w(n) 5)

This approach obtains very fast convergence times and skips
any modeling of the brain response in the presence of artifacts

[6].

IV. PROPOSED DM ARTIFACTS COMPRESSION
TECHNIQUE

In this section we propose a DM artifact compression tech-
nique to relax AFE requirements without losing information,
increasing AFE specifications or employing complex algo-
rithms, thus leading to simple on-chip implementation.

The proposed architecture is shown in Fig. 4. The imple-
mented algorithm subtracts discrete voltage values, ¢(n), from
the input of the amplifier when the output of the ADC, vo(n),
exceeds certain threshold values, +V};,. This is done to avoid
the saturation of the signal path. Voltage increments c¢(n) are
updated every sampling period and are given by:

Ucor(n - 1) »|Uo(n)| S ‘/th
cn)=qcn—1)+a-(v,(n) —Vin) ,vo(n) > Vi

c(n—1)+a- (vo(n) + Vin) ,v0(n) < —Vin

(6)
where,
o 0 7|U'res(n)| S Vos
veor(1) = {e(n) Jorea(m)] > Voo ™
1 N—n

Urea(n) = c(n) — j;l () (8)

« 1s a scaling factor which depends on the AFE voltage gain
and the DAC resolution, v..-(n) is a corrective term aiming
to eliminate any residual offset, v,..s(n), at the output of the
ADC, V,; is an upper limit for the tolerated offset, and N is an
estimation of the maximum duration of an artifact, expressed
in number of samples. v,.s(n) is continuously calculated, even
when [v,(n)| > [Vip].

The original signal can be approximately reconstructed by
adding an scaled version of the increments ¢(n) to the output
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Fig. 5. Simulation results of the proposed technique. (a) Artifact plus signal
at the input of the system. (b) Compressed signal at the input of the ADC.
(c) Final reconstructed signal. (d) Final suppressed artifact signal.

of the ADC according to the expression: d(n) = v,(n) + [ -
¢(n—1), where 3 is ideally equal to 1/« although deviations
can occur due to DAC imperfections. The process is illustrated
in Fig. 5 (c).

Given the high frequency oscillations generated along the
compression of artifacts, (see Fig. 5 (b)), they can be largely
attenuated by using a simple low-pass filter, as can be seen in
Fig. 5 (d) in which a 20-tap FIR filter is employed. This obtains
an artifact attenuation of 34 dB, similar to other techniques in
the literature [4], [19] but with lower hardware complexity.

V. CONCLUSIONS

In this paper, a review of analog front-ends techniques for
neural recording suitable for attenuating common-mode (CM)
and differential-mode (DM) artifacts has been presented. Spe-
cial attention has been paid on DM artifact-aware techniques
because, in this case, interferers overlap the neural signal
component which conveys clinically relevant information. Af-
ter classifying and discussing the pros and cons of some of
the most relevant DM artifacts-aware techniques reported in
the literature, the paper presents a DM artifact compression
algorithm with relaxed requirements on AFE dynamic range
and ADC resolution. The proposal is able to reconstruct the
signal, including the artifact, or largely suppress the interferer
by simple low-pass filtering.
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