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I. INTRODUCTION

The design of electronic circuits with customized con-
trollable chaotic behavior has potential interest in many
application scenarios such as instrumentation, analog signal
processing, and communication and ranging systems.
Regarding instrumentation, chaotic circuits represent an
efficient alternative for nonrepeatable pseudorandom signal
generation. Such generators are useful for the implementa-
tion of noise sources—both white and colored—which are
frequently employed at speech processing [1] and for testing
the dynamic behavior of electronic systems [2], among many
other applications [3]. On the other hand, chaos generators
can be used in analog signal processing applications as a
dither source to improve the performance of other blocks.
For instance, dithering can be used to whiten the noise floor
of modulators, as well as to reduce the (idle channel)
spurious tones, which are introduced during quantization
of direct current (dc) inputs (audible in voice-band appli-
cations) [4], [5]. Also, dithering can be used to improve
the integral nonlinearity of high-performance Nyquist-rate
analog-to-digital converters [6]. In another application,
chaos generators can be used, together with certain dynamic
element matching mechanisms, to make digital-to-analog
errors average to zero over multiple sample instances [7].
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In ranging systems, the nonperiodicity of chaotic signals,
as well as the rapid decorrelation of their time-shifted
sequences, make the use of chaos an interesting coding
technique for high resolution radar systems [8]. Finally,
chaotic circuits play a prominent role in chaos-based digital
communication systems as they supply the required sample
functions to which information symbols are mapped to [9].
In these systems, chaos generators, instead of conventional
frequency synthesizers, provide thecommunication car-
riers, which are modulated by the digital information that is
transmitted. Inherent to this chaotic modulation, the digital
information also experiments a bandwidthspreadingas a
consequence of the wideband and noise-like spectral prop-
erties of chaos. This capability of simultaneous modulation
and spreading, with ana priori lower system complexity
than traditionalspread spectrumtechniques, is deserving a
considerable research interest during the last years.

In the aforementioned applications, chaotic circuits
can be realized by interconnecting discrete integrated
circuit (IC) component parts on a printed circuit board.
However, whenever system miniaturization and/or power
consumption are issues, chaotic circuits must be realized
as monolithic ICs, preferably in standard complementary
metal–oxide–semiconductor (CMOS) technologies where
they can be embedded with other digital and analog circuitry.
The objective of this paper is, indeed, to survey the different
design techniques, both at system and circuit levels, involved
in the monolithic realization of chaotic ICs.

Though the design of chaotic generators can be afforded
from different perspectives as, for instance, by adjusting the
parameters of well-known oscillators or phase-locked loop
structures [10], this paper focuses on a systematicstate-space
approach, which lead to more general solutions, based on the
electronic synthesis of the system state equations. Following
this approach, Section II reviews the mathematical models
leading to chaotic behavior and identifies the basic building
blocks required for their implementations. They are classi-
fied into linear (covered in Sections III and IV) and non-
linear (described in Section V) operators. Finally, Section VI
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presents three chaotic IC prototypes which illustrate the ap-
plication of the methodological aspects and circuit concepts
previously described.

II. M ATHEMATICAL MODELS FORCHAOS GENERATION

Every mathematical model able to produce chaotic be-
havior has two basic ingredients:dynamicsandnonlinearity.
Regarding dynamics, models for chaos generation can be
classified intodiscrete-timeor continuous-time, depending
on whether the system evolution is described by nonlinear
difference or differential equations, respectively. Another
possible classification is betweenautonomousor nonau-
tonomoussystems, which depends on whether the generator
is able or not to self-sustain chaotic oscillations without any
external driving excitation. Because this last classification
has a weak impact regarding IC implementation, we will
focus exclusively on the autonomous case.

In the following, we will separately review the basic fea-
tures of discrete-time and continuous-time chaos generators,
identifying the basic operations needed for their synthesis.
As already mentioned, a systematic state-space approach will
be used as the theoretical framework to express (and later to
implement) the different chaotic systems.

A. Discrete-Time Chaos Generators

Autonomous discrete-time systems (or discrete maps, in
short) can be generally described by the followingth (delay)
order -dimensional ( -D) finite-difference equation (FDE):

(1)

where symbolizes the discrete-time variable,
represents the state vector of the

system at the th discrete time instant, and is a -D
time-invariant nonlinear vector field that depends on the pa-
rameter set . For the purposes of signal generation, we will
assume that system (1) is characterized by aninvariant set
under , such that any trajectory starting inremains
confined to it. Additionally, the model may also include a-D
output equation defined in terms of themost recent states
of the system

(2)

where is the output vector of the discrete map
at the th instant and is a function, in general, non-
linear and parameterized by a vector.

Among the discrete maps defined by (1), first-order sys-
tems ( ) play a major role as they model most of the
electronic chaos generators proposed so far. Their state equa-
tion may be written as

(3)

where , , ,
and is a nonlinear time-invariant
vector field ( and ). Fig. 1 shows
a block diagram for first-order discrete-maps comprising a
linear section, anonlinear functionblock connected in a

(a)

(b)

Fig. 1. (a) Block diagram of a first-order FDE-based chaos
generator. (b) Operations encompassed in the� block [element
in the inset of Fig. 1(a)].

Table 1
Short Catalog of Chaotic Discrete Maps

feedback loop [11] and an output stage. The linear section,
included in the dashed box of Fig. 1(a), consists of static and
dynamic elements. The static elements realize the operations
of summation and scaling (blocks labeledand ). On the
other hand, the dynamic element performs sample-and-hold
(S/H) and delay operations, as shown in Fig. 1(b). Usually,
such element is implemented by a single electronic device
which, hereafter, will be represented by the symbol in the
inset of Fig. 1(a) and denoted asdelay element.The clock
signal fixing the sampling period of the delay element deter-
mines the iterations of the feedback loop.

Table 1 contains a short catalog of first-order discrete maps
which have been implemented in electronic form, either by
means of discrete components or integrated on silicon. For
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Fig. 2. Block diagram of an ODE-based chaos generator.

each entry, Table 1 shows the particular settings for
and , according to (3). The definition interval of the maps
and their parameter ranges to achieve chaotic regime can be
found in the references attached to the first column of Table 1.

An important conclusion that can be drawn from Table 1
is that chaotic behaviors can be obtained from very simple
mathematical models. Indeed, a single state-variable is re-
quired to generate chaos, as occurs in the 1-D maps listed in
the first eight rows of Table 1. Thereby, simple monolithic
realizations can be expected from the use of discrete maps.
In spite of this structural simplicity, the dynamic behavior of
the system can be extremely rich and complicated. This will
be illustrated in Section VI by means of theBernoulli map
defined in the fifth row of Table 1.

B. Continuous-Time Chaos Generators

As already mentioned, continuous-time chaos generators
are those that can be described by nonlinear differential equa-
tions. Among them, we can further distinguish between those
based on ordinary differential equations (ODEs) and those
based on delay-differential equations. The latter have been
recently proposed as an efficient method for the generation of
high fractal dimension chaos with no substantial increase on
complexity (a first order system is enough to produce chaotic
behavior) [24]. Nevertheless, these systems are still far from
being well understood and we will focus on ODE-based sys-
tems, for which a lot of research has been done in the last
decades.

Autonomous continuous-time ODE-based chaos genera-
tors belong to the space of -D dynamical systems
with nonlinear elements, defined by the state equation

(4)

where is a diagonal matrix defining the time-integration
constants of the system, is the
state vector, , , ,
and is a nonlinear vector field
( and ). Such systems can be
mapped onto the analog computer concept of Fig. 2. It con-
sists of a forward path containing a linear time-invariant sub-
system (included in the dashed box of Fig. 2), a feedback path
including the nonlinear elements of , and an additional
path to synthesize the output vector . As

Table 2
Catalog of ODE-Based Autonomous Chaotic Oscillators

can be seen, the only difference between the conceptual dia-
gram in Fig. 2 and that associated to first-order discrete maps
in Fig. 1(a) is the use of integrators instead of delay elements.
This apparently minor change has, however, strong implica-
tions regarding system design, as will be shown next.

Table 2 includes some exemplary ODE-based chaotic
systems found in the literature. Conditions on the different
system parameters to guarantee chaotic behavior can
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be found in the references attached to the first column of
Table 2. The remaining columns indicate, respectively,
matrices , and the elements of the vector field in
accordance to the state representation in (4) (in all cases,

is a null vector and is the identity matrix). Circuit
demonstrators using off-the-shelf discrete electronic devices
have been reported for all the examples in Table 2 and
those in rows 3, 7, 9, and 12 have been also implemented in
monolithic form.

Table 2 reveals a well-known fact: in autonomous
ODE-based systems, three state variables are at least re-
quired to generate chaos if the nonlinear feedback path in
Fig. 2 is memoryless. Otherwise, if the vector field
exhibits hysteresis, as occurs in the last row of Table 2, the
jumps in the hysteretic elements correspond to additional
states [36]. This is clearly in contrast with discrete maps for
which single state-variable systems are enough to produce
chaotic behavior.

C. General Considerations for the Design of Chaotic ICs

In the previous two sections, both the architectures and op-
erations required for the systematic design of chaos genera-
tors using a state-space approach have been identified. One
step ahead is to apply the appropriate transformations on the
mathematical models to make themsuitablefor synthesis in
monolithic form.

Such modifications must consider two different aspects
that are related, on the one hand, to the particular nonlinear
vector field and, on the other, to the overall state equation
of the dynamical system [defined by (3) for discrete maps or
(4) for ODE-based generators].

First, let us consider the nonlinear vector field. The
synthesis of arbitrary nonlinear functions in IC form can be
achieved by relying to systematic representation techniques
where operators are closely related to the nonlinearities
available at the design primitives (details are given in
Section V). Nevertheless, for the sake of reliability and
also to reduce the hardware complexity of the design (and,
hence, its area and power consumption), nonlinear vector
fields should be made as “primitive-based” as possible in
order to reduce the number of such elementary operators.
It is, therefore, strongly suggested to properly alter the
nonlinear vector field (if it deviates too much from a
simple primitive-based representation) while retaining the
most relevant features of the targeted dynamic behavior.
In particular, simplification strategies based on piece-
wise-linear (PWL) modeling are specially appealing for IC
realization because of the accuracy and simplicity of their
synthesis—it is ultimately based on the controled transition
between theON and OFF states of transistors, as nonlinear
primitive operator. An example of piecewise linearization
is given by the ODE-based systems in the rows 8 and 9
of Table 2, in which multipliers are replaced by simpler
PWL nonlinearities, namely, sign inversion and absolute
value operations. Another advantage of PWL modeling, in
particular for high-accuracy IC implementations, is that the
dynamical system becomes linear at each region of the space
partition and, hence, well-defined calibration [38], [39] and

Fig. 3. Annihilation of chaotic dynamics in the tent map forB=2.

tuning [40] mechanisms are readily applicable to precisely
trim each of the affine characteristics.

Another important issue for the choice of an IC-suitable
nonlinear vector field is therobustnessof the system dy-
namics [22], [42]. Because of the limited accuracy of analog
circuit implementations, models for chaos generators must
be robust enough so that the unavoidable technological pa-
rameter deviations do not severely degrade the prescribed dy-
namic features. A main consequence of this fact is that some
nonlinearities, which are often found in theoretical studies,
must be precluded for electronic chaos generation, unless
they are conveniently transformed. A typical example is of-
fered by the tent map, defined in the fourth row of Table 1. In
order to obtain a uniform distribution of the chaotic time-se-
ries, parameter is set to 2, as illustrated in Fig. 3. In this
configuration, if for some circuit impairment or noise con-
tribution, the trajectory jumps outside the nominal invariant
set (shaded area in Fig. 3), the system evolves after a tran-
sient to the parasitic equilibrium point, which arises from
the saturation characteristics of the circuit (long-dashed rec-
tangle in Fig. 3). As a result, the chaotic behavior vanishes
and the nominal invariant set collapses to the stable fixed
point . To avoid this situation, the map must be transformed
so that it exhibits a basin of attraction larger than its nom-
inal invariant set, with a clearance between them determined
by the maximum expected perturbations in the circuit im-
plementation. Different strategies to achieve this goal can be
found in [15], [22], [41], [42].

Let us, now, consider the overall state equation of the
chaotic system. For similar reasons of reliability and cost,
it should be simplified before implementation. This can
be accomplished by, first, defining a family of dynamical
systems that retains almost all features of the targeted model
and, second, by identifying which element of such family
is the most convenient from an IC perspective. Essential to
the first step is the concept oflinear conjugacy,1 among
dynamical systems [43], [44], as it guarantees that both the

1Two dynamics systemsF(�) andH(�) are said to be linearly conjugated
if there exists a nonsingular matrixM such thatM � F = H �M (“�”
denotes composition).
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original model and the elements of its linearly conjugated
family exhibit the same qualitative dynamics. Interestingly
enough, it has been shown that for a wide class of dynamical
systems, namely, those which can be represented inLur’e
form,2 linear conjugacy between systems with the same
vector field is assured whenever the eigenvalues of
corresponding matrices , and ,

are identical [44]. This implies that the
family of linearly conjugated Lur’e forms built upon a
given nonlinear vector field can be exactly defined by

less parameters than those nominally included in the
representations (3) and (4)—together with vector. Hence,
there exist infinitely many linearly conjugated elements
able to reproduce the same qualitative dynamics as the
original model, which allows one to establish a selection
procedure aimed to determine that element most suitable
for IC realization.3 Some tailoring criteria for this selection
procedure are [32].

1) Low Complexity:Because system parameters must be
mapped into physical devices, those vector fields with
a minimum number of different nonzero entries in

, and —they are referred to ascanonical
elements—area priori the best suited in terms of
area and power consumption. In particular, those
configurations with proportional to a unitary vector
are preferred because the vector field exhibits a single
nonlinear block.

2) Optimum Dynamic Range:The dynamic range of a
chaos generator is maximized as long as all its state
variables are able to swing up to a maximum tolerable
level imposed by the power supply of the circuit [1],
[47]. The procedure by which this maximization can
be achieved isscaling and basically consists on ap-
plying a convenient similarity transformation on the
state vector . It is worth pointing out that scaling
does not affect the system architecture (null entries to
matrices and remain unaltered after scaling),
but the canonical property of the original system may
be lost, i.e., system parameters, initially with iden-
tical magnitude, turn to be different after scaling, thus
leading to an increase on the system complexity.

3) Reduced Mismatch:Ratio accuracy (or matching) of
similar components is enhanced as long as circuit
elements are built by replicating a given unitary
device [48]. Thus, if system parameters are related
by integer ratios, the IC improves in accuracy and, at
the layout level, in modularity and integration density.
This improvement, however, reduces as the spread
of system parameter values increases [48]. Thus,
the unitary elements replication approach must be
accompanied, in some cases, by techniques aiming

2Dynamical systems in Lur’e form are systems defined by (3) and (4) in
which the vector fieldfff(�), assumed memoryless, depends onw x, where
w 2 < . For our purposes, it will further assumed that Lur’e forms are
observablein the classical sense of control theory [45].

3It is worth noting that multidimensional PWL representation with par-
allel boundary planes [46] can be also expressed in Lur’e form and, hence,
they are also suitable for system level optimization—an additional advan-
tage on the use of PWL models for chaos generation.

to reduce the spread of system parameters [1]. Once
again, this can be achieved by using a proper similarity
transformation on the state variables.

A final (and critical) system-level consideration that must
be addressed on the design of chaos generators is to evaluate
the tolerance of the dynamic behavior against parameter de-
viations. Such deviations are due to the fact that physical
circuit components (e.g., capacitors, operational amplifiers,
comparators, etc.) deviate from nominal values or design
intent because of a variety of nonidealities which can be
grouped into three main categories, namely,noise, static,
anddynamic[39]. Noise category basically comprises the er-
rors due to thermal noise generated by solid-state devices.
On the other hand, mismatch of ideally identical devices,
which results from uncontrolled technological parameters in
the fabrication process, and dc-related errors such as offset,
signal-independent charge injection, and finite dc gain of ac-
tive components can be grouped as static nonidealities. Satu-
ration characteristics that result from the upward limited dy-
namic range of the circuit elements can be also seen as an
static nonideality. Finally, dynamic errors sums all frequency
dependent nonidealities such as signal-dependent charge in-
jection, limited dynamic accuracy in comparators, limited
slew-rate, and limited gain-bandwidth product in amplifiers.

In order to tie the degradation of the chaotic dynamics to
the above nonidealities, each of the error sources must be
conveniently modeled and incorporated in the nominal rep-
resentations (3) or (4) [22], [32]. Then, a worst-case anal-
ysis, together with exhaustive simulations of the system in-
cluding all nonideal effects, must be made to determine the
specifications for the different building blocks of the archi-
tecture. This bridges the system and circuit levels in the de-
sign route of the chaos generator. Of course, there may be
cases in which the calculated block requirements are beyond
the limitations imposed by the technological process. This
occurs either when the specifications for the chaos generator
(usually given in terms of output statistics) are too restrictive
or when the system architecture shows a largesensitivityto
some parameter variations, making it impractical for silicon
implementation. In this last case, if the mathematical model
belongs to a family of linearly conjugated systems, a new el-
ement that is less sensitive to parameter inaccuracies must
be found. In general, there is not a simple way to link chaotic
system perturbations and deviations on statistic performance
other than by long-run simulations. Only for PWL chaotic
models, where the system behaves linearly at each region,
a classical sensitivity analysis [49] on the eigenvalues pat-
tern—which determines the qualitative dynamics of the gen-
erator—with respect to the circuit components can be useful
to estimate how far the dynamic behavior deviates from the
nominal one [32].

D. Concluding Remarks

In this section, we have explored different alternatives of
chaos generators, given selection criteria for high-level opti-
mization, and identified the basic operations involved in their
implementation. Such operations can be classified between
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(a) (b)

(c) (d)

Fig. 4. Basic concepts for the continuous-time dynamics.
(a) Open-loop integrator. (b) Miller integrator. (c) Parasitics of
integrated capacitors. (d) First-order frequency-domain model of
a transconductor.

linear and nonlinear and within the first group, between dy-
namic (continuous-time integrators and delay elements) and
static (signal weighting and summation) operators.

In the following sections, we will present some general
ideas and concepts for the IC realization of these opera-
tions, paying special attention to the nonidealities which
affect them, as they ultimately determine the accuracy and
operation speed of the chaos generator.

III. L INEAR OPERATORS FORCONTINUOUS-TIME

GENERATORS

A. Integrators

Because monolithic inductors are only feasible at very
high frequencies,4 capacitors are the basic dynamic prim-
itives of ODE-based chaotic ICs. State variables are,
hence, voltages and the dynamic updating of these volt-
ages is realized by driving the state capacitors through
currents. Fig. 4 shows two alternative implementations of
this dynamic updating: the open-loop [see Fig. 4(a)] and
the Miller [see Fig. 4(b)] structures. In both cases, the
excitation is obtained for convenience as the result of a
linear voltage-to-current transformation—using a transcon-
ductor—from an intermediate voltage, i.e., .
Ideally, both circuits obtain

(5)

which corresponds to the behavior of an integrator with nom-
inal time constant ( stands for the th state
variable of the system).

The differences between these alternative realizations
arise when parasitics are accounted. In the foregoing anal-
ysis, considered parasitics are the following.

4Interestingly enough, some (integratable) classical oscillators based on
passive resonant circuits, such as the Colpitts oscillator [28], can exhibit
chaotic behavior upon proper parameter setting, thus giving the possibility
of generating chaotic signals in the gigahertz range.

Table 3
Time-Constant Error and Approximated Poles of the Open-Loop
and Miller Structures

1) Those associated with the capacitor [see Fig. 4(c)],
consisting of two additional capacitors (bottom and top
plates).

2) The first-order small-signal parasitics of the transcon-
ductor, namely: output resistance , output
capacitance , and frequency-dependent transcon-
ductance [see Fig. 4(d)].

3) The small-signal parasitics associated to the op-amp.
Obviously, these are dependent on the op-amp archi-
tecture. Here, we assume that the op-amp is internally
compensated, has low output impedance (negligible
for analysis purposes), and can be modeled as [48]

(6)

First of all, note that in the structures of Fig. 4(a) and
(b), the capacitor terminal labeled is connected to alow-
impedancepoint (a point where the voltage changes only
slightly for large current ranges). In Fig. 4(a), the terminal

is directly connected to an alternating current (ac) ground,
while in Fig. 4(b), the low-impedance feature is achieved by
the op-amp output node. Consequently, the two structures are
insensitive to , i.e., the parasitic has virtually no influence
on the circuit behavior.5 Let us now separately analyze the
circuits of Fig. 4(a) and (b).

In the structure of Fig. 4(a), the parasitic capacitors
and are connected in parallel with the nominal capacitor

. This makes the integrator time constant to deviate from
its nominal value as , where the time-con-
stant error is given in Table 3.

In addition, the parasitic resistances connected to the node
produce losses in the integration and, hence, the dynamic

behavior deviates from the nominal one represented by
. The actual transfer function is

(7)

where is the low-frequency pole created by the parallel
connection of and (see Table 3) and

5This is not exactly true as this capacitor may influence the transient re-
sponse of the op amp, especially when the op amp has a single-stage archi-
tecture [48].
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Fig. 5. Equivalent circuit for the analysis of the Miller
configuration.

represents the transconductor frequency response.6

The transfer function models the so-calleddynamic
error of the integrator. This error is negligible only for those
frequencies, where . Neglecting at this point the
influence of the transconductor, these frequencies are defined
by .

Consider now the Miller configuration of Fig. 4(b). To first
order, the subcircuit formed by the op amp and the capacitor

can be represented by the equivalent circuit at the right of
node in Fig. 5—obtained by applying the Miller theorem.
Analysis of this circuit obtains

(8)

which contains two poles at and , respectively, and
displays time constant errors in the passband

. Assuming that and are largely separated and
that , one obtains the pole
expressions shown in Table 3. Within the passband frequency
range, where the circuit operates as an integrator, (8) can be
approximated by

(9)

thus leading to the expression of given in Table 3. It
shows that the time constant error is inversely dependent on
the op-amp dc gain and, hence, very small.

Comparing the Miller and the open-loop configurations,
the following conclusions can be drawn.

1) In the Miller configuration, the time constant error is
attenuated by . Hence, the Miller integrator exhibits
superior performance regarding the influence of the
parasitic capacitances. It is a consequence of the fact
that, in the passband, the op amp exhibits very small
input resistance given by , which domi-
nates over other impedances connected to this node. In
the limit, as , this resistance becomes null
and the op-amp input becomes avirtual ground.

2) The low-frequency corner of the passband, given by
, is much smaller for the Miller than for the open

loop. In the latter, the output conductance man-
ifests as such in the expression of , while, for the

6To first-order analysis, the frequency dependence of transconductances
can be modeled by using a single poleT (s) � (1 + s=! ). This model
can be valid for frequencies up to tens of megahertz. For more detailed
models, see [50].

Miller configuration, it manifests attenuated by .
This is another positive consequence of feedback.

3) The high-frequency corner is smaller for
the Miller configuration—a negative consequence of
feedback. In the open-loop configuration, the high-fre-
quency behavior is limited by the dynamic response of
the transconductor , while in the Miller one, it
is also limited by .
Assuming that the op amp and the transconductor are
optimized, it is likely that the latter exhibits a fre-
quency range wider than , thus, inferring poorer
frequency response for the Miller configuration than
for the open-loop one.

Summarizing, the previous analysis shows that the open-loop
configuration is preferable for high-frequency applications,
though it may requirepredistortion to compensate for the
time constant errors. On the contrary, the Miller configura-
tion is more appropriate for low and medium frequencies, re-
quiring no predistortion. Note, however, that the degradation
of the frequency response in the Miller structure is mainly
a consequence of the model used for the op amp. High-fre-
quency advantages of the open-loop structure are not so ev-
ident if custom op amps without internal compensation are
used [51]. In addition, frequency response of Miller struc-
ture may perhaps be enhanced by active compensation tech-
niques [49] to properly shape the integrator high-frequency
response and, thus, combine the features of accuracy, small
losses, and large frequency bandwidth into a single structure.

Another comparison between the two configurations con-
cerns their suitability for IC implementation. Specifically, the
fact that ac grounded capacitors (i.e., those that have one of
their terminals tied to either the positive or the negative power
supply) are better suited than floating capacitors.

B. Signal Summation

The circuits of Fig. 4(a) and (b) can be extended to per-
form summing integration by routing all the voltage-to-cur-
rent transformation outputs (each associated with a summing
term) to node and letting Kirchoff current law (KCL) to
work. In this way, the basic structure to implement (4), con-
ceptually shown in Fig. 6(a), is defined. Note that every sum-
ming term has an output conductance and an output capac-
itance. Hence, at node, the equivalent conductance and
capacitance are given, respectively, by

(10)

where and are mean values of the individual
conductances and capacitances, respectively, andis the
number of excitations [according to (4) ].
After substituting by and by in the
expressions of Table 3, we notice that increases propor-
tionally with for the open-loop configuration. The same
enlargement is observed in the Miller integrator. However,
the whole error for this configuration is still attenuated
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Fig. 6. (a) Obtaining the state variable updating current
as the summation ofM current components. (b) Using a
second-generation current conveyor to isolate the summing node
from the state variable node. (c) Concept for the realization of
current conveyors.

by . As a counterpart, the frequency behavior of the
open-loop integrator remains virtually unchanged, while
the value of for the Miller configuration decreases
inversely proportional to .

A strategy to attenuate the errors caused by the summa-
tion of signals is to isolate the node where the currents are
aggregated from that where the resulting current is applied
to the state capacitor. This is represented in Fig. 6(b) for the
open-loop configuration, although it can be used with the
Miller configuration as well. The “glue” component is acur-
rent conveyor[52]. Actually, the current conveyor in Fig. 6(b)
is of the so-called second generation, whose ideal behavior
is described by

(11)

On the one hand, it creates a virtual ground between the
terminals and . On the other, it realizes a current fol-
lower operation between the terminalsand . Depending
on the polarity of the current transfer between theand
terminals, the conveyor can be positive (CCII+) or negative
(CCII-), which correspond respectively to the plus and minus
signs in (11). In practice, the input terminals of the current
conveyor can be realized by arranging two MOS transistors
in feedback configuration around an op amp, as depicted in
the conceptual circuit of Fig. 6(c). Then, the negative and
the positive components of the input current can be rooted to
the output node by using current mirrors [52]. Obviously, the
current conveyor produces new errors that must be taken into
consideration for proper design. First-order analysis of these
errors can be found in [53].

(a)

(b)

(c)

Fig. 7. Structures for voltage-to-current conversion in the
case of (a) low output resistance, (b) floating self-coductor, and
(c) grounded self-conductor.

C. Basic Strategies for Voltage-to-Current
Transformation—Signal Weighting

Along this section, voltage-to-current transformation
has been modeled through a transconductor, i.e., a com-
ponent whose output resistance—modeled through
in Fig. 4(d)—is large by construction. Also, the transcon-
ductor input resistance has been implicitly assumed infinite
and, consequently, loading errors at the transconductor
driving node have been disregarded. However, in practice,
voltage-to-current transformation is sometimes realized
using circuits whose input and/or output resistances are
not large by construction—for instance, MOS transistors
operating in the ohmic region under strong inversion [54].

For transformation circuits having low input resistance,
the only way to attenuate loading errors is driving the input
node with low output resistance. On the other hand, for those
having low output resistance, the loading problems can be
attenuated by resorting to one of the structures of Fig. 7. In
Fig. 7(a), the output node is clamped at a fixed value,
thus annulling spurious current contributions todue to
node voltage fluctuations. On the other hand, Fig. 7(b) and
(c) is appropriate whenever the voltage-to-current transfor-
mation is realized by exploiting the self-conductance

of either an active, i.e., composed of MOS tran-
sistors, or a passive resistor.

Other important issues on the design of voltage-to-current
transformation circuits are briefly reviewed in the following.

Programmability: It basically refers to the possibility
of scaling transconductances through electrical control
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variables. For instance, the transconductance of a MOS
transistor in the saturation regime under strong inversion
depends on the large-signal transconductance factorand
on the gate voltage overdrive (see
Fig. 12 in Section V for details). Two possible controlling
scenarios, hence, arise:

1) taking advantage of the dependence ofon transistor
geometry and of the MOS transistor operation as an
analog switch to realize digitally controledvalues;

2) taking advantage of the dependence on biasing con-
ditions to realize analog-controled transconductance
values.

It is worth pointing out that programmability is the basic
mechanism for signal weighting and, hence, for the imple-
mentation of the coefficients of , and in (4).

Linearity: Another important issue regarding signal
weighting is to guarantee linearity of the overall input–output
characteristics. Because primitive components are essen-
tially nonlinear (see Fig. 12), linearity on transconductances
must be achieved by properly combining different elements.
Many different strategies have been proposed for nonlinear
cancellation as, for instance, by using differential config-
urations, by applying feedback, through inverse function
techniques, etc. Some of these strategies are reviewed in
[52].

Scaling Factor Accuracy:Scaling factor accuracy has
two faces: absolute accuracy and ratio accuracy. The former
refers to exactness in absolute values of transconductances
and has tolerances of around 30%. Absolute accuracy is
important in cases where timing is relevant. In these cases,
a tuning mechanism must be incorporated to the circuit to
reduce the tolerances to about 1%–2% [40], [49].

On the other hand, ratio accuracy, which was already con-
sidered as a selection criteria in Section II-C, can be made
quite good—up to 0.1%—depending on the device areas,
shapes, and distances [48].

IV. L INEAR OPERATORS FORDISCRETE-TIME GENERATORS

The implementation of delay elements for discrete maps
always relies on the use of capacitors for storing and re-
trieving information in the form of voltages, switches for
charging and/or discharging capacitors in response to a con-
trol signal, and active devices for defining the conditions of
charge transfer. Main difference among analog sampled-data
techniques come from the physical variables which is ulti-
mately used to convey the information. Such variables can
be in the form of voltages [switched-capacitor (SC) tech-
nique [11]), currents [switched-current (SI) technique [16]],
timing characteristics of a pulse train (pulsewidth [13] or
pulse-position modulation techniques [17]), or phase angles
(phase-locking technique [14]), among other possibilities. In
this paper, we will focus on SC and SI techniques.

The SC technique requires op amps, as active devices,
and linear capacitors, as holding elements [1], [56], [57].
High-quality capacitors (high linearity, reduced voltage, and
temperature dependence, and good matching properties) are
available in technologies that offer parallel-plate structures

separated by thin oxide [58], [59]. If such structures are not
available, as in pure digital CMOS technologies, capacitors
are commonly implemented by exploiting the thin-oxide gate
capacitance of MOS transistors [60]. MOS-based capacitors
usually exhibit larger capacitance per unit area and better
matching than parallel-plate structures, but suffer from sig-
nificant nonlinearities and parasitic capacitances, and must
be conveniently biased to guarantee a low-resistivity con-
ducting layer under the gate. As a result, SC circuits built
on digital technologies have inevitably poorer performance
than those implemented on analog-oriented processes.

An alternative sampled-data approach that avoids the need
for highly linear capacitors is the SI technique [61]. In this
case, capacitors are simply formed by the input parasitics
of transconductors, thus, rendering the approach specially
appealing for standard digital processes. Unfortunately,
this notable simplification is at the expense of perfor-
mance degradations. Nevertheless, in applications requiring
moderate accuracy, the complexity and area consumption
of SI circuits is generally lower than that of SC circuits
performing the same function, which makes SI technique a
fallback alternative when low-cost fabrication is mandatory.

A. Switched-Capacitor Linear Operators

Consider the basic S/H structure of Fig. 8(a) [1]. Analog
switches are controled by a clock with two nonoverlapping
phases, as shown in Fig. 8(c). Switches labeled(respec-
tively, ) turn ON in synchronization with the first (respec-
tively, second) clock phase.7 The circuit operates as follows.
In the acquisition phase, switches labeledareON and the
op amp is configured as a unity-gain amplifier. Assuming that
the op amp is ideal, the input voltageis sampled by capac-
itor . In the holding phase, switch labeled is ON and the
bottom plate of the sampling capacitor is connected to the
op-amp output. Since the top plate of remains connected
to the inverting input of the op amp, the output voltage during
the holding phase keeps the previously sampled input. Alto-
gether, the operation of the S/H circuit can be described by
the following recursive equation:

(12)

thus providing unity-gain half-cycle delay of the input
voltage during the holding phase and null output during
acquisition. Full-cycle delay elements, as required by (3),
can be realized by simply cascading two half-delay stages
with alternating S/H clock phases.

Taking advantage of the holding operation, SC techniques
allow simple realizations of the aggregation and scaling func-
tions. Consider, for instance, the SC circuit of Fig. 8(b) and
assume the op amp is ideal. During phase, voltages
are sampled by capacitors , while
capacitor is discharged as a result of the virtual ground
at the input terminals of the op amp. During the next phase,

7By convention, any arbitrary signals(�) observed at the end of the first
(respectively, second) clock phase will be denoted ass(k + 1=2) [respec-
tively, s(k)] k = 0; 1; . . ., whereT is the clock signal period [see Fig. 8(c)].

DELGADO-RESTITUTO AND RODRÍGUEZ-VÁZQUEZ: INTEGRATED CHAOS GENERATORS 755

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on April 13,2020 at 14:49:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. (a) SC half-delay unity-gain block. (b) SC block for
weighted summation. (c) Clock waveforms.

the charges stored in are fully transferred to capacitor
, thus, obtaining by the charge conservation principle

(13)

which shows that, during the holding phase, the circuit ac-
complishes a weighted summation of the input voltages, as
required by (3). Note that scaling factors are ideally defined
by capacitor ratios and, hence, highly ac-
curate. Furthermore, programmability can be quite easily in-
corporated to Fig. 8(b) by using digitally controled capacitor
arrays [1].

Obviously, the above circuits deviate from the ideal be-
havior as long as parasitic effects are accounted. For sim-
plicity, the foregoing analysis focus exclusively on the SC
amplifier of Fig. 8(b) with a single input branch (subindex
is omitted for the sake of clarity). Considered parasitics are
the following.

1) The small-signal parasitics associated to the op amp,
as depicted in Fig. 4(d), assuming that the frequency-
dependence of the transconductance is negligible. An
additional parasitic input capacitance to ground is
also considered.

2) The finite resistance of the switches in theON state.
For simplicity, it is assumed that the sampling switches

and of Fig. 8(b) are identical withON resis-
tance . ON resistances of switches , , and
are, respectively, , , and .

Fig. 9. Equivalent circuits for the analysis of the (single input
branch) SC amplifier of Fig. 8(b) during (a) the holding phase and
(b) the sampling phase.

Analysis of other nonideal effects as, for instance, op-amp
offset voltage, limited slew-rate, capacitor mismatch or non-
linearities of the capacitors, switches, and op-amp dc gain
can be found elsewhere [1], [62]–[65].

Fig. 9(a) and (b) shows the equivalent circuits for the SC
amplifier of Fig. 8(b), valid for the holding and sampling
phases, respectively. Generic loading capacitancesand

have been included in the models.
Let us first consider the holding phase [Fig. 9(a)] and as-

sume that switch-ON resistances are negligible. In this case,
the transfer function from the voltage stored at the sampling
capacitor to the output node reads as

(14)
where , is the total output
capacitance during the holding operation mode and

(15)

is called the feedback factor of the SC amplifier. Equation
(14) shows that the dc gain of the SC amplifier stage is given
by

(16)

where represents the closed loop static
error of the stage during holding. Further, (14) shows that,
apart from a high-frequency zero at , the time con-
stant during amplification is given by

(17)

which increases as the feedback factordecreases or, equiv-
alently, as the weighting factor grows.

Regarding the effect of the nonzeroON resistance of the
switches during the holding phase, we will separately ana-
lyze the deviations introduced by the sampling and feed-
back switches for a better understanding. Considering the
sampling switch alone, it is found that for frequencies below
the gain-bandwidth product of the op amp ,
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the system can be still approximated by a first-order system
with a time constant

(18)

which, compared to (17), shows that the main consequence of
the nonzero resistance is an increase on the time constant
of the structure.

A more complicated situation arises when the feedback
resistance is considered. In this case, the transfer function
can not be approximated by a first-order system, but must be
characterized by a natural frequencyand a quality factor

given, respectively, by

(19)

(20)

as well as by a zero located at

(21)

One possible strategy for sizing the feedback switchis
to choose so that cancels out the closed loop pole

, with given in (18). However, the transient
response of the system can not be exactly estimated from
the factor, due to the existence of the zero, and, therefore,
sizing must ultimately rely on circuit simulations.

Let us now consider the sampling phase [see Fig. 9(b)]
and assume, at first instance, that switch-ON resistances are
all negligible. In this case, the transfer function from the
input voltage to the voltage across the sampling capacitor

reads as

(22)

where is the total output capacitance of
the stage during the sampling operation mode. Equation (22)
shows that the time constant during sampling is given by

(23)

where . In most practical situations, ,
i.e., the settling behavior is slower during amplification.

If the influence of the nonzeroON resistances in Fig. 9(b)
are considered, the time constant takes the form

(24)
which shows that increases due to the local time constants
of the switch resistances and the associated capacitors.

The above analysis, though particularized to the SC ampli-
fier of Fig. 8(b), is quite representative of the frequency lim-
itations appearing in SC circuits and can be easily extended
to other SC amplifier stages [57] and/or operational ampli-
fier models [66].

Fig. 10. (a) SI half-delay unity-gain block. (b) SI block for
weighted summation.

B. Switched-Current Linear Operators

Fig. 10(a) shows a SI unity-gain S/H circuit, which is often
referred to as second generationcurrent memorycell [52],
[61]. The transconductor can be realized by using a single
transistor or a composite structure as discussed in [61]. On
the other hand, the capacitor has only second-order influence
on circuit performance and may simply consists on the para-
sitic capacitance at the transconductor input node—non-
linearity is not a problem provided that the clock period is
long enough to guarantee that steady state is reached at each
clock phase. Under ideal transfer conditions and using the
clocking diagram of Fig. 8(c), the circuit of Fig. 10(a) obtains
[61]

(25)

in close correspondence to (12). Again, full-cycle delay
elements can be realized by simply cascading two current
memory cells with alternating S/H clock phases.

Extension of Fig. 10(a) to perform aggregation and scaling
functions can be accomplished with the circuit of Fig. 10(b).
By exploiting KCL at the output node,, it obtains

(26)
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(a)

(b)

Fig. 11. Equivalent circuits for the analysis of the (single input
branch) SI amplifier of Fig. 10(b) during (a) the sampling phase
and (b) the holding phase.

which shows that, during the holding phase, the circuit real-
izes a weighted summation of the input current, as required
by (3). As for SCs, ideal scaling factors are
defined by similar component (transconductors) ratios and,
hence, can be set with high accuracy. On the other hand, sim-
ilar to ODE-based systems, programmability can be achieved
through either analog control or digital control of transcon-
ductance values.

Deviations from the ideal behavior defined by (25)
and (26) arises when parasitic effects are considered. The
foregoing analysis focus exclusively on the SI amplifier of
Fig. 10(b), assuming a single input branch (subindexis
omitted for the sake of clarity) and the following parasitics.

1) The small-signal parasitics associated to the transcon-
ductors, assuming the model of Fig. 4(d), but
neglecting the reactive behavior of the transconduc-
tance.

2) The finite ON resistance of the sampling switch ,
denoted as .

Fig. 11(a) and (b) shows the equivalent circuits for the SI
amplifier of Fig. 10(b), valid for the holding and sampling
phases, respectively. Analysis of Fig. 11(a), corresponding
to the sampling phase, yields

(27)
where and . This is a
second-order lowpass transfer function with pole frequency
and factor given by

(28)

(29)

In most practical situations, output capacitance is small,
condition is met, and the SI amplifier
behaves at it had a single-pole with a time constant

(30)

On the other hand, during the holding phase, the voltage
stored in the (parasitic) sampling capacitor is converted
to a current according to

(31)

where it has been assumed that the loading circuit of the SI
amplifier performs as an ideal current conveyor so that the
output impedance of the last transconductor has no influence
on . Taking into account (27) and (31), the overall dc cur-
rent gain of the SI amplifier can be approximated as

(32)

which is similar to the expression obtained for SC circuits in
(16). It should be noted, however, that simple transconduc-
tors are not able to obtain high values of, indicating that
more complex circuit structures are needed to reduce trans-
mission errors and achieve a performance comparable to that
of SC alternatives. Circuit techniques for increasing the ratio

of transconductors involve the use of negative feed-
back either to reduce the output conductance or increase the
input transconductance [61], [67].

Another aspect in which SI circuits compare unfavorably
to their SC counterparts is regardingswitching imperfections
[61], [68], [69]. As we have seen, operation of both SC and SI
circuits relies on the capacitor’s ability to hold voltages when
switches turn off. In practice, because of switching imperfec-
tions, the stored voltages suffer from deviations that are in-
versely proportional to the holding capacitance. Given that SI
circuits use, as holding capacitors, the parasitics at the input
of the transconductors—capacitances are small if transcon-
ductors with reduced sizes are used—switching imperfec-
tions are particularly problematic for this kind of circuit.
Switching errors can be attenuated with several techniques.
They include dummy switch compensation, fully differential
architectures, and algorithmic cancellation [57], [61].

V. NONLINEAR OPERATORS

There are two basic strategies to realize nonlinear opera-
tors in IC form: 1) using signal processing or 2) exploiting
some nonlinear mechanisms of the primitive components
available in the technological process.

Techniques of the first category have mainly arose in the
context of multipliers design, but can be easily generalized
to the implementation of other functions [56], [70]. The most
popular signal processing approach is based on analog pulse
modulation and relies on the (nonlinear) control of some
characteristic features of a pulse train (e.g., amplitude, dura-
tion, or position). Another alternative is based on the concept
of temporal shaping in which the output is obtained by sam-
pling a nonlinear waveform at an instant determined by the
comparison of a given input level and an external (generally,
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nonlinear) reference waveform [70]. It is worth noting that
both alternatives have been already applied to the synthesis
of discrete maps with chaotic behavior [13], [17].

Systematic procedures and circuits to realize nonlinear
functions using IC design primitives are described in
[70]–[75], among others. Particularly, [70], [74], and [75]
focus on CMOS technologies. In general, the design route
toward the implementation of nonlinear characteristics
comprises four steps [70]:

1) identification of the intrinsic nonlinearities available at
the design primitives; in the CMOS case, the nonlin-
earities available at the MOS transistor;

2) construction of nonlinear operators (multiplication, di-
vision, logarithms, sign, absolute value, etc.) through
the interconnection of primitive components;

3) realization of the elementary nonlinear functions (trun-
cated polynomials, Gaussian functions, etc.) required
by a given representation technique (splines, radial
basis functions, etc.) through the interconnection of the
building blocks devised in the previous step;

4) realization of nonlinear tasks through the proper inter-
connection of all the circuit blocks above, after solving
the approximation (interpolation) problem associated
to the representation technique.

Nevertheless, complex representation techniques are
seldom used in the context of chaos generators and, most
often, the implementation of nonlinear functions restricts to
the first two steps of the nonlinear synthesis route. As an
illustration, Table 4 shows some of the nonlinear operators,
grouped into smooth and PWL, most commonly found for
chaos synthesis—they cover all the nonlinearities (except
trigonometric) listed in Table 1 and Table 2. Table 4 also
makes a classification into basic and derived operators and
presents some exemplary expressions that obtain the later in
terms of the former. Note that such relationships can take
both algebraic or implicit forms. In this last case, the targeted
nonlinear operator can be generally obtained by means of
feedback [70], [71]. As can be seen, few basic operators are
required to span most of the nonlinear functions used for
chaos generation. They are the step function, hysteresis, and
extension operators, in the case of PWL functions, and the
squaring and exponential operators, in the case of smooth
functions. Hence, basic building blocks implementing such
characteristics are essential to provide circuit solutions to
many nonlinear synthesis tasks.

Focusing on the first step of the synthesis route, Fig. 12
outlines the nonlinear behaviors available at MOS transis-
tors, classified, as in Table 4, in smooth and PWL. It is worth
noting that these equations are first-order models and as such,
only give rough approximations to actual behaviors. There-
fore, nonlinear circuit designs based on these expressions
will only approximate the intended functionality. Fig. 12 of-
fers many possibilities for the implementation of nonlinear
operators. Most evident, the large-signal characteristics of
MOS transistors in the forward saturation region under weak
or strong inversion can be exploited, respectively, for the syn-
thesis of the exponential and squaring operators [70]. On

Table 4
Examples of Basic and Derived Nonlinear Functions

the other hand, the linear dependence of the MOS transcon-
ductance with the voltage overdrive

in the saturation strong-inversion region is at the very
heart of thetranslinear principle [70]–[75], which allows
the synthesis of current-mode circuits able to generate al-
gebraic transformations in an essentially exact and temper-
ature-insensitive manner. The capability of linearly control-
ling the self-conductance of MOS transistors in the ohmic
region through the gate voltage overdrive also allows inter-
esting solutions for nonlinear synthesis [76]. Finally, the pos-
sibility to nulling the MOS self-conductance gives a direct
implementation of the rectification operation; it is simply
achieved by precluding or not a current signal to flow through
a circuit branch according to the value of a control variable.

A detailed description of all the above techniques is
beyond the scope of this paper and readers are referred to
[70]–[76]. Herein, we will restrict to give some basic ideas
for the implementation of PWL operators in both current-
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Fig. 12. Intrinsic primitive nonlinearities. Note that voltages
are referred to the bulk (local substrate) terminalB. � is the
large-signal transconductance factor—a parameter proportional
toW=L, whereW is the transistor width andL is the transistor
length,V is the zero-bias threshold voltage,n is the slope
factor in weak inversion,� = �=(2n ), I is an specific
current proportional to�, andU is the thermal voltage [55].

and voltage-charge domains, as they are the most extended
nonlinearities in the mathematical models for chaos.

A. PWL Shaping in Voltage-Charge Domain

Fig. 13(a) shows a modification of the SC amplifier in
Fig. 8(b), which realizes voltage rectification. Assume that
nodes and are both grounded. For , the
switch arrangement at the bottom terminal of connects
nodes and to ground. Consequently, voltage at node

remains unaltered from one clock phase to the next and,
therefore, there is no charge flow through . On the other
hand, for , node is set to , while node is
set to . Consequently, the voltage at nodechanges from
one clock phase to the next and generates an incremental
charge, which, assuming that the input voltage remains con-
stant during each full clock cycle, results in the following
output voltage:

(33)

Fig. 13. (a), (b) Circuits for rectification in voltage-charge
domain. (c) SC hysteresis operator.

where . Hence, the circuit in Fig. 13(a) real-
izes a concave extension operator in the voltage-charge do-
main—it also introduces half-cycle delay. To synthesize the
convex extension operator and, therefore, to make the char-
acteristics null for , it suffices to interchange the
comparator inputs. The technique is easily extended to the
absolute value operation by connecting terminalto and
terminal to .

Another approach to the realization of PWL SC circuitry
use series rectification of the circulating charge through a
comparator-controlled switch [23], [70]. Fig. 13(b) shows an
implementation of the concave extension operator using this
technique. As for the circuit in Fig. 13(a), convex rectifica-
tion is easily obtained by swapping the comparator inputs. A
similar principle can be used for the implementation of the
step and the sign function operators. An example is given
in Section VI in connection to the electronic design of the
Bernoulli map.

Finally, Fig. 13(c) shows an implementation of the hys-
teresis operator, formed by the positive feedback loop of
a comparator and a SC amplifier [77]. Threshold levels of
the hysteretic characteristics are given by and ,
where is the gain of the SC amplifier, and and are,
respectively, the high- and low-logic state levels provided
by the comparator.

B. PWL Shaping in Current-Mode Domain

The circuit of Fig. 14(a), called current switch rectifier, is
a versatile building block for rectification operations [78]. It
consists of a voltage-mode amplifier and a nonlinear resistor
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Fig. 14. (a) Current rectifier and symbol. (b) Enhanced current
comparator schematic and symbol. (c) Current-mode hysteresis
operator.

(formed by transistors and ) arranged in a negative
feedback loop. Drain terminals of and are connected
to appropriate low impedance nodes, which do not interfere
the basic functionality of the block.

The circuit exhibits three modes of operation depending
on the input current level. For positive current flows, the in-
coming current is integrated in the input parasitic capacitor
and the input voltage is pulled high. The voltage differ-
ence is then amplified by (the gain of the voltage
amplifier), causing to go low and forcing to theOFF

state, so that . In addition, transistor turnsON

and a negative feedback loop is formed around the amplifier.
This feedback configuration reduces the input resistance of
the current switch and obtains . A dual situation oc-
curs for negative input currents. In this case, the input voltage

is pulled down and goes up, turning ON and
OFF, so that . The voltage amplifier is fedback by
transistor , thus, reducing the input resistance of the rec-
tifier. Hence, completely draws the input current and we
have .

Summarizing, the circuit of Fig. 14(a) routes the input
current to either the upper or the lower output terminal de-
pending on its sign, i.e.,

(34)

and, thus, it generates simultaneously the concave (
output) and convex ( output) rectified versions of the
input current. Besides, the output voltage of the amplifier
can be made to swing from rail to rail by using an additional
amplifier stage [see Fig. 14(a)], thus, generating logical
signals according to the input current sign. Namely, the
output is “1” for and “0” for
and the opposite for , thus implementing the comparison
operation.

It is worth noting that due to the capacitive impedance of
the circuit during transitions around , it exhibits very
high resolution (only limited by leakage currents), insensi-
tive to transistor mismatch. Additionally, the feedback loop
created by the amplifier makes the voltage excursions at the
input node small for a large input current range, thus, allevi-
ating the interstage errors of the circuit.

The current switch rectifier of Fig. 14(a), however, exhibits
a noticeable transient limitation that arises from the Miller
effect created around the overlapping capacitor, which
connects input and output terminals of the amplifier—signif-
icant even for minimum sized feedback transistors, in partic-
ular for low current levels [78]. Indeed, it can be shown that
the response time to an input current step from a nega-
tive current level up to a positive current overdrive
is given by

(35)

where . Therefore, is
inversely proportional to the current overdrive.

Improved transient response is achieved with the circuit of
Fig. 14(b) [78]. Its static operation follows principles similar
to that of Fig. 14(a), however, it obtains two orders of mag-
nitude improvement in transient behavior. In this case, the
response time takes the quadratic expression

(36)

where is the gain-bandwidth product of the op amp. In
this case, is inversely proportional to the square root of
the current overdrive and, therefore, better suited for com-
parison purposes than Fig. 14(a). Unfortunately, it does not
preserve the current rectification properties and, hence, does
not qualify directly for current-mode function generation.

Finally, Fig. 14(c) shows the conceptual schematic of a
current-mode hysteretic operator, which takes advantage of
the comparator in Fig. 14(b). The saturation current levels of
the transconductor in the positive feedback loop around the
comparator define, in this case, the threshold levels of the
hysteretic characteristics.

VI. EXAMPLES OF IC CHAOS GENERATORS

In this section, we present three IC prototypes for chaos
generation that have been designed following the concepts
and methodology described in the previous sections. One of
them is a continuous-time chaos generator and implements
the well-known Chua’s oscillator (defined in the eighth row
of Table 2). The other two designs implement the Bernoulli
map (defined in the fifth row of Table 1) in one case using
SC techniques and, in the other, SI techniques.

A. Bernoulli Map

Fig. 15 shows a SC schematic for the Bernoulli map,
whose model is repeated here for convenience [15]

(37)
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Fig. 15. SC schematics for Bernoulli map.

(a) (b)

Fig. 16. (a) Onset of parasitic stable points in the Bernoulli map
due to improper setting ofA. (b) Strategy to avoid locked states.

Op-amp and related capacitors perform the weighted
summation in (37) and introduce a half-cycle delay. Op-amp

is used to implement the remaining half delay stage and
complete the concept of Fig. 1(a). Parameters in the map
are controled by the capacitors , , and and the dc
voltage as follows:

(38)

The nonlinearity is realized via a phase-reverser switch ar-
rangement controlled by a dynamic comparator. Depending
on the value of , this arrangement makes to be either
added or subtracted at the input of the op-amp, thereby
yielding the sign operator in (37). The comparator consists
of an input offset canceled amplifier, followed by a regener-
ative sense amplifier and aNOR-based latch [57].

Operation of the circuit in Fig. 15 is described by (37)
whenever op amps work in their linear region. If any of the
amplifiers enters in saturation, the circuit no longer imple-
ments (37) and locks at parasitic stable points close to the
power rails. This undesirable situation can be avoided by
properly setting parameter. To illustrate this point, Fig. 16
shows the open-loop transfer characteristics of the map, in-
cluding op-amp voltage saturations, for two different values
of and the same value of . In Fig. 16(a), par-
asitic stable points and appear at the intersections of
the transfer function characteristics with the bisecting line.
This makes the circuit to evolve, after a transient, to either

or , destroying any chaotic behavior. On the other
hand, for Fig. 16(b) no spurious equilibria appear and chaotic
waveforms are robustly generated. Necessary conditions to
guarantee this last situation are

(39)

Fig. 17. Microphotograph of the SC Bernoulli map prototype.

Fig. 18. Measured open-loop transfer characteristic of the SC
Bernoulli map for (a) different values ofA and (b) different values
of B andB . Measured spectra for differentB ,B settings for
(c)B = B = 61=32 and (d)B = 47=32,B = 39=32.

where denotes the op amp’s positive (negative)
saturation level. Interestingly enough, the condition
gives rise to the creation of a clearance between the invariant
set of the system and its basin of attraction, which guarantees
that, under small perturbations, trajectories are always rein-
jected into the invariant set. Other strategies to achieve this
goal can be found in [15], [22], [41], and [42].

Fig. 17 shows the microphotograph of a programmable
prototype of the circuit in Fig. 15 [15]. In this prototype,
the slopes of the characteristic— for and
for —can be separately controled by means of two
binary weighted capacitors with six control bits each. Also,
an additional control bit can be used to selectively open or
close the feedback loop.

Fig. 18(a) shows a family of curves for different values
of voltage and slopes and fixed at 61/32. On the
other hand, Fig. 18(b) shows a set of transfer characteristics
obtained for different values of and with chosen
so that V. Measurements in closed loop were also
made for all possible combinations of and values in-
side the chaotic regime. Fig. 18(c) and (d) show the spectra
obtained for two of these combinations using a clock fre-
quency of kHz. Flat spectra were obtained for the
cases . This is illustrated in Fig. 18(c), ob-
tained for . The spectrum is flat up to
75 kHz (35% of the clock frequency) with a maximum devi-
ation of 1 dB, which renders the circuit well suited for white
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Fig. 19. Programmable current-mode scaled delay block.

(a) (b)

Fig. 20. Current-mode realization of the Bernoulli map
nonlinearity. (a) Circuit schematic. (b) Implemented characteristic.

noise generation. On the other hand, for , generated
noise becomes colored, as shown in Fig. 18(d).

Now, let us consider implementation of (37) in cur-
rent-mode domain [16]. The scaled delay operation is
realized as a cascade of two track-and-hold SI stages with
complementary phase clocks. As indicated in Fig. 19,
the rightmost transconductor has a parallel digitally
programmable structure controled by a digital word of
4 bits . This makes parameter B binary-pro-
grammable from 1.0 to 2.0 at steps of 0.25—in practice, the
scaling factor of the transconductor controlled by bitis
made slightly less than to make parameter lower
than 2.0 and, hence, avoiding divergent orbits. Fig. 20(a)
shows a conceptual schematic for the realization of the
PWL characteristics of Fig. 20(b). Its operation relies on
the current rectifier of Fig. 14(a). Positive input currents are
routed to node while, simultaneously, the voltage
evolves to the high logic state, turning ON and
OFF. Thus, a current (obtained by KCL) is
directed to the output node through the transistor—the
right-hand piece of Fig. 20(b) is implemented in this manner.
Similarly, negative input currents turn ON and a current

, obtained by KCL at node , is delivered to the
output node.

Fig. 21 shows a microphotograph of the SI Bernoulli map
prototype [16]. It includes some extra circuitry to enable
testing the output current and to open or close the feedback
loop.

Fig. 22(a) shows the measured PWL current transfer char-
acteristics obtained from the prototype. Deviation from the
ideal characteristic for input currents between20 A to
20 A is less than 0.2%. Fig. 22(b) shows a detail of the
global characteristics, in which the input current swings from

21 pA to 21 pA. It is intended to illustrate the resolution

Fig. 21. Microphotograph of the SI Bernoulli map prototype.

Fig. 22. (a) Measured characteristic of the nonlinear block.
(b) Detail of the discrimination function. (c) Measured current
waveform. (d) Power density spectrum.

achieved in the current discrimination which, as already an-
ticipated in Section V-B, amounts to a few picoamperes.

Fig. 22(c) and (d) illustrates the closed loop operation of
the prototype for a clock frequency of 500 kHz. Fig. 22(c)
shows the measured current waveform at the output of the
delay block for (actually, a slightly lower value as
mentioned before), while Fig. 22(d) shows its associated
power density spectrum. The waveform of Fig. 22(c) shows
that apparently coincident values of result in quite
different values after few iterations, thereby confirming
the expected unpredictably feature. Regarding Fig. 22(d),
detailed measurements shows a very flat spectrum from dc
up to about 30% of the clock frequency (deviation in this
range was of less than 1 dB).

It is illustrative to compare performance of this circuit to
that of the SC circuit in Fig. 15. Area occupation of the SI
prototype is about one order of magnitude smaller than for
the SC prototype. Also, for half the power consumption, the
speed of the SI prototype is about three times greater than that
obtained from the SC prototype. This confirms the suitability
of the SI technique for moderate system requirements.
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Fig. 23. OptimizedGm-Crealization of the Chua’s oscillator.

B. Chua’s Oscillator

Fig. 23 shows the simplified schematic of an integrated
prototype of the Chua’s oscillator [32]. It implements, in-
deed, a modified version of such oscillator, obtained from
the optimization procedure described in Section II-C. The
resulting model is slightly different to that shown in Table II
and defined by matrices

(40)

where . The non-
linear function is still given by .

In Fig. 23, all the integrating capacitors are assumed iden-
tical and the linear transconductors have been implemented
by building a unitary block with gain and connecting in
parallel as many of such units as indicated by the values of

, , and . On the other hand, the nonlinear transconductor
has been designed so that its output current also includes the
linear term associated to the first entry of, i.e.,

(41)
Fig. 24 shows the circuit used for the PWL function con-
sisting of a front-end transconductor and a nonlinear circuit
that operates in current-mode domain based on the high-ac-
curate rectification mechanism described in Section V-B.

Two further circuit level aspects have been considered in
the design of the schematic of Fig. 23. One is the addition
of dummy devices so that all the integration nodes exhibit
the same capacitance by construction. Accordingly, the
global time constant of the circuitis given by ,
where is the total capacitance at the state variable nodes.
Since parasitics are nonlinear and depend on the operating
point of the circuit, more than 80% of the total capacitance
is contributed by the nominal integrating capacitance.

Fig. 24. Implementation of the PWL transconductor.

Fig. 25. Chip microphotograph.

Fig. 26. Route to chaos in a silicon prototype of the Chua’s
oscillator. Limit cycle for (a) period 1, (b) period 2, and (c) period
4. (d) Birth of Rössler-like attractor. (e) Rössler-like attractor.
(f) Birth of double-scroll attractor. (g) Double-scroll attractor.
(h) Periodic window. (i) Double-scroll attractor close to saturation.
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A second aspect is the introduction of a tuning mechanism
[49] (not shown in Fig. 23) to reduce the absolute tolerance
of the circuit time constant below 2% [32].

Fig. 25 shows a microphotograph of the chaotic oscillator,
which includes the onchip tuning scheme, and other auxil-
iary circuitry for biasing and measurement purposes. Power
dissipation is less than 1.8 mW for a symmetrical biasing
of 2.5 V. The fabricated prototype is able to reproduce the
whole bifurcation sequence leading to the chaotic attractors
of the oscillator, as shown in Fig. 26 [32]. The different phase
portraits (projections on the plane ) has been obtained
by progressively increasing parameter, while keeping the
other system parameters fixed. As can be seen, the picture
book reveals a period-doubling route to chaos, including pe-
riodic windows, as well as Rössler-like and double-scroll
attractors.

VII. SUMMARY

Through proper design techniques encompassing consid-
erations both at system and circuit levels, it is possible to de-
sign compact and robust chaotic ICs in CMOS technologies.
This paves the way for the integration in silicon of many of
the applications already devised for nonlinear dynamics.
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