20 research outputs found

    Spinal Cord Injury Repair by Intrathecal Infusion of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 in a Rat Model

    Get PDF
    Background: Stromal cell-derived factor-1 (SDF-1)/CXC Chemokine receptor 4 (CXCR4) is an important cytokine, with multiple functions, which plays a crucial role in the recruitment of multiple stem cell types in the defect sites of central nervous system (CNS). Various strategies have been managed to improve functional recovery after spinal cord injury (SCI). One of these strategies is the use of factors to limit damage and increase recovery. Objectives: In this study we investigated the effect of SDF-1 in spinal cord injury repair in a rat model. Materials andMethods: Adult male Wistar rats were randomly divided to four groups (n = 5) as follows: Sham, SCI, SDF-1 and Vehicle. Spinal cord injury model was created by contusion of T8-T9 by clips and SDF-1 infusion pump implanted in the neck region. One week after injury, 5-Bromo-20-Deoxyuridine (BrdU) was injected to trace the proliferative cells. Basso-Beattie-Bresnahan (BBB) test was performed to evaluate locomotor activity following SCI. Immunohistochemistry test was performed to determine proliferating cells, and real time polymerase chain reaction (PCR) was performed to detect the CXCR4 cells in tissue. Results: Significant improvements in locomotor function were detected in the SDF-1 group compared with the SCI and vehicle groups (P < 0.05). The results showed that SDF-1 treatment increased proliferative cells at the spinal cord injury site. Real time PCR revealed that these proliferative cells are CXCR4 positive that intake Bromodeoxyuridine (Brdu). Conclusions: These results showed that the administration of SDF-1a increases the number of proliferating cells in the injured area in the spinal cord and improves functional recovery

    Infection of Semen-Producing Organs by SIV during the Acute and Chronic Stages of the Disease

    Get PDF
    International audienceBACKGROUND: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-producing organs in HIV+ asymptomatic individuals. METHODOLOGY/PRINCIPAL FINDINGS: Using a range of molecular and cell biological techniques, this study investigates SIV infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA. In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is transiently increased during the early phase of the infection but spermatogenesis remains unaffected. CONCLUSIONS/SIGNIFICANCE: The present study reveals that SIV infection of the macaque male genital tract is an early event and that semen-producing organs display differential infection levels and immune responses. These results help elucidate the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate virus from semen

    In vitro activity of candidate microbicides against cell-associated HIV

    No full text
    Most research on HIV transmission and microbicides focuses on the inhibition of cell-free virus (CFV) present in genital secretions. However, an effective microbicide should also block the transmission of cell-associated virus (CAV) originating from seminal T-cells and macrophages. Because inhibition of CAV remains controversial, especially for viral entry inhibitors, we developed a novel in vitro assay to evaluate the activity of different classes of candidate microbicides against cell-free HIV and HIV-infected leucocytes (i.e, resting PBMC, activated PBMC and monocyte-derived macrophages). The assay is based on two CD4+ CXCR4+ T-cell lines (R5MaRBLE and X4MaRBLE) that both contain a firefly luciferase reporter gene but differ in the expression of the CCR5 co-receptor. Consequently, the quantification of luciferase activity and Gag p24 concentration in co-cultures of R5-tropic HIV-infected leucocytes with each cell line separately allowed to discriminate between the infection of the cell-lines (i.e., target cells), the ongoing infection in the HIV-infected leucocytes (i.e., effector cells), and the total infection of the co-culture (i.e., effector + target cells). All fourteen antiretrovirals tested, were able to block target cell infection by all three sources of CAV, although a small decrease in activity (2 to 18-fold) was observed for all entry inhibitors. On the other hand, the production of Gag p24 by the infected effector cells could only be blocked by protease inhibitors. Overall, these results show that entry and protease inhibitors are eligible drug classes for inclusion in future combination microbicides

    Development of an in vitro dual-chamber model of the female genital tract as a screening tool for epithelial toxicity

    No full text
    Heterosexual transmission of human immunodeficiency virus (HIV-1) is the predominant mode of infection worldwide. However, the early steps of transepithelial infection still need to be clarified. Using epithelial cells, originating from the female genital tract, and peripheral blood mononuclear cells as subepithelial target cells, an in vitro dual-chamber model of the female genital tract was developed. Remarkably, an intact layer of some cell types (HEC-1A, CaSki and Ect1) served as a protective barrier against cell-free but not against cell-associated HIV-1 that crossed the epithelial barrier through transmigration. Furthermore, dysfunctions of the epithelial layers were assessed by monitoring transepithelial electric resistance and transepithelial passage of FluoSpheres and HIV-1 after treatment with nonoxynol-9 (N-9). Most of the functional assays showed dysfunction of the epithelial barrier at lower concentrations compared to a widely used colorimetric toxicity assay (WST-1). Finally, N-9 treatment caused a significant increase in the production of interleukin-8 (IL-8) and macrophage inflammatory protein-3alpha (MIP-3alpha) and a decrease of Secretory Leukocyte Protease Inhibitor (SLPI) and Monocyte Chemotactic Protein-1 (MCP-1) in this model. In conclusion, this model is a useful tool to (1) study HIV-1 transmission mechanisms and (2) evaluate epithelial toxicity of candidate microbicides. Copyright 2010 Elsevier B.V. All rights reserved
    corecore