25 research outputs found

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Fine-scale spatial genetic structuring and relatedness in a natural population of an European fossorial vole (Arvicola terrestris)

    No full text
    *INRA Biologie et gestion des populations 34980 Montferrier sur Lez (FRA) Diffusion du document : INRA Biologie et gestion des populations 34980 Montferrier sur Lez (FRA)International audienc

    Targeting the PI3K p110alpha isoform inhibits medulloblastoma proliferation, chemoresistance, and migration.

    No full text
    PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival

    Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of pseudomonas aeruginosa

    No full text
    &lt;p&gt;Addressing the functionality of predicted genes remains an enormous challenge in the postgenomic era. A prime example of genes lacking functional assignments are the poorly conserved, early expressed genes of lytic bacteriophages, whose products are involved in the subversion of the host metabolism. In this study, we focused on the composition of important macromolecular complexes of Pseudomonas aeruginosa involved in transcription, DNA replication, fatty acid biosynthesis, RNA regulation, energy metabolism, and cell division during infection with members of seven distinct clades of lytic phages. Using affinity purifications of these host protein complexes coupled to mass spectrometric analyses, 37 host complex-associated phage proteins could be identified. Importantly, eight of these show an inhibitory effect on bacterial growth upon episomal expression, suggesting that these phage proteins are potentially involved in hijacking the host complexes. Using complementary protein-protein interaction assays, we further mapped the inhibitory interaction of gp12 of phage 14-1 to the alpha subunit of the RNA polymerase. Together, our data demonstrate the powerful use of interactomics to unravel the biological role of hypothetical phage proteins, which constitute an enormous untapped source of novel antibacterial proteins. (Data are available via ProteomeXchange with identifier PXD001199.)&lt;/p&gt;</p

    Republication: Targeting PI3KC2β Impairs Proliferation and Survival in Acute Leukemia, Brain Tumours and Neuroendocrine Tumours.

    No full text
    Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies
    corecore