205 research outputs found

    INI1 mutations in meningiomas at a potential hotspot in exon 9

    Get PDF
    Rhabdoid tumours have been shown to carry somatic mutations in the INI1 (SMARCB1/hSNF5) gene. A considerable fraction of these tumours exhibit allelic losses on chromosome 22. Allelic loss on 22q also is characteristic for meningiomas, however most of these alterations are considered to be associated with mutations of the NF2 gene. We examined a series of 126 meningiomas for alterations in the INI1 gene. Four identical somatic mutations in exon 9 were detected resulting in an exchange of Arg to His in position 377 of INI1. Our observations were reproduced both by using DNA from a new round of extraction and by employing overlapping primers. This mutational hotspot therefore appears to be an important target in the formation of a fraction of meningiomas. In addition, 4 novel polymorphisms of INI1 were characterized. Our data indicate that the INI1 is a second tumour suppressor gene on chromosome 22 that may be important for the genesis of meningiomas. © 2001 Cancer Research Campaign http://www.bjcancer.co

    High specificity of BCL11B and GLG1 for EWSR1-FLI1 and EWSR1-ERG positive Ewing sarcoma

    Get PDF
    Ewing sarcoma (EwS) is an aggressive cancer displaying an undifferentiated small-round-cell histomorphology that can be easily confused with a broad spectrum of differential diagnoses. Using comparative transcriptomics and immunohistochemistry (IHC), we previously identified BCL11B and GLG1 as potential specific auxiliary IHC markers for EWSR1-FLI1-positive EwS. Herein, we aimed at validating the specificity of both markers in a far larger and independent cohort of EwS (including EWSR1-ERG-positive cases) and differential diagnoses. Furthermore, we evaluated their intra-tumoral expression heterogeneity. Thus, we stained tissue microarrays from 133 molecularly confirmed EwS cases and 320 samples from morphological mimics, as well as a series of patient-derived xenograft (PDX) models for BCL11B, GLG1, and CD99, and systematically assessed the immunoreactivity and optimal cut-offs for each marker. These analyses demonstrated that high BCL11B and/or GLG1 immunoreactivity in CD99-positive cases had a specificity of 97.5% and an accuracy of 87.4% for diagnosing EwS solely by IHC, and that the markers were expressed by EWSR1-ERG-positive EwS. Only little intra-tumoral heterogeneity in immunoreactivity was observed for differential diagnoses. These results indicate that BCL11B and GLG1 may help as specific auxiliary IHC markers in diagnosing EwS in conjunction with CD99, especially if confirmatory molecular diagnostics are not available

    New Insight into the Colonization Processes of Common Voles: Inferences from Molecular and Fossil Evidence

    Get PDF
    Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity

    Age-dependency of the prognostic impact of tumor genomics in localized resectable MYCN non-amplified neuroblastomas Report from the SIOPEN Biology Group on the LNESG Trials

    Get PDF
    BACKGROUND: Biology based treatment reduction, i.e. surgery alone also in case of not totally resected tumors, was advised in neuroblastoma patients with localized resectable disease without MYCN amplification. However, whether the genomic background of these tumors may influence outcome was unknown and therefore scrutinized in a meta-analysis comprising two prospective therapy studies and a ‘validation’ cohort. PATIENTS AND METHODS: Diagnostic samples were derived from 406 INSS stages 1/2A/2B tumors from three cohorts: LNESGI/II and COG. Genomic data were analyzed in two age groups (cut-off: 18 months) and quality controlled by the SIOPEN Biology Group. RESULTS: In both patient age groups stage 2 tumors led to similarly reduced event-free survival (5y-EFS: 83+3% versus 80+4%), but overall survival was only decreased in patients >18m (5y-OS: 97+1% versus 87+4%; p=0.001). In the latter age subgroup, only tumors with SCA led to relapses, with 11q loss as the strongest marker (5y-EFS: 40+15% versus 89+5%; p18m but not <18m. CONCLUSION: The tumor genomic make-up of resectable non-MYCN amplified stage 2 neuroblastomas has a distinct age-dependent prognostic impact in neuroblastoma patients. While in the younger age group tumors with unfavourable (SCA) and favorable genetics showed relapses, both without worsening OS, in the older age group only tumors with unfavorable genetics led to relapses and decreased OS.N/

    Automatic recognition of schwa variants in spontaneous Hungarian speech

    Get PDF
    This paper analyzes the nature of the process involved in optional vowel reduction in Hungarian, and the acoustic structure of schwa variants in spontaneous speech. The study focuses on the acoustic patterns of both the basic realizations of Hungarian vowels and their realizations as neutral vowels (schwas), as well as on the design, implementation, and evaluation of a set of algorithms for the recognition of both types of realizations from the speech waveform. The authors address the question whether schwas form a unified group of vowels or they show some dependence on the originally intended articulation of the vowel they stand for. The acoustic study uses a database consisting of over 4,000 utterances extracted from continuous speech, and recorded from 19 speakers. The authors propose methods for the recognition of neutral vowels depending on the various vowels they replace in spontaneous speech. Mel-Frequency Cepstral Coefficients are calculated and used for the training of Hidden Markov Models. The recognition system was trained on 2,500 utterances and then tested on 1,500 utterances. The results show that a neutral vowel can be detected in 72% of all occurrences. Stressed and unstressed syllables can be distinguished in 92% of all cases. Neutralized vowels do not form a unified group of phoneme realizations. The pronunciation of schwa heavily depends on the original articulation configuration of the intended vowel

    Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1).

    Get PDF
    In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P &lt; .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (&gt; 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P &lt; .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P &lt; .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations

    Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

    Get PDF
    Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future
    corecore