6 research outputs found

    Open Forum Infect Dis

    No full text
    Background In view of the fast viremia decline obtained with integrase inhibitors, we studied the respective effects of initiating efavirenz (EFV) or raltegravir (RAL)-based antiretroviral therapy (ART) regimens on human immunodeficiency virus (HIV)-1 deoxyribonucleic acid (DNA) levels and inflammation biomarkers in the highly inflammatory setting of advanced HIV-1 disease with tuberculosis (TB) coinfection. Methods We followed cell-associated HIV-1 DNA, high-sensitivity C-reactive protein (hsCRP), interleukin 6 (IL-6), soluble CD14 and D-Dimer levels for 48 weeks after ART initiation in the participants to the ANRS12-180 REFLATE-TB study. This phase II open-label randomized study included ART-naive people with HIV and TB treated with rifampicin to receive RAL 400 mg twice daily (RAL400), RAL 800 mg twice daily (RAL800) or EFV 600 mg QD with tenofovir and lamivudine. Results In 146 participants, the median (interquartile range [IQR]) week (W)0 HIV-1 DNA level was 4.7 (IQR, 4.3–5.1) log10 copies/106 CD4+, and the reduction by W48 was −0.8 log10 copies/106 CD4+ on EFV, −0.9 on RAL400, and −1.0 on RAL800 (P = .74). Baseline median (IQR) hsCRP, IL-6, sCD14, and D-Dimer levels were 6.9 (IQR, 3.3–15.6) mg/L, 7.3 (IQR, 3.5–12.3) pg/mL, 3221 (IQR, 2383–4130) ng/mL, and 975 (IQR, 535–1970) ng/mL. All biomarker levels decreased over the study: the overall W0–W48 mean (95% confidence interval) fold-change on ART was 0.37 (IQR, 0.28–0.48) for hsCRP, 0.42 (IQR, 0.35–0.51) for IL-6, 0.51 (IQR, 0.47–0.56) for sCD14, and 0.39 (IQR, 0.32–0.47) for D-Dimers. There were no differences in biomarker reduction across treatment arms. Conclusions In participants with HIV and TB, EFV, RAL400, or RAL800 effectively and equally reduced inflammation and HIV-1 DNA levels

    Surveillance of HIV-1 primary infections in France from 2014 to 2016: toward stable resistance, but higher diversity, clustering and virulence?

    No full text
    International audienc
    corecore