11 research outputs found
Characterization of the Tumor Suppressor Capabilities of SWI/SNF Complex Member BAF155 in Cancer Cell Lines and Cooperation of SNF5 and p53 Pathways
Tumorigenesis is often attributed to aberrant gene expression leading to altered cell cycle control, abnormal differentiation, and inefficient DNA repair. The activity of chromatin remodeling complexes is vital to maintaining proper control of such gene expression. The SWI/SNF chromatin remodeling complex is responsible for remodeling up to 6% of the human genome, with many of those genes known to be associated with cell cycle control. Therefore, impaired or defective activity of this complex could encourage tumor development. Little is known, however, of how SWI/SNF accomplishes those tasks and the differing roles of the distinct members of the complex. Composed of more than ten members, several components are now known to have tumor suppressive roles, as their absence correlates with tumorigenic phenotypes. We propose also that core SWI/SNF member, BAF155, is also likely to be involved in controlling tumor progression. I have utilized two carcinoma cell lines lacking endogenous BAF155 expression to explore the role of BAF155 in cell cycle control and found that re-expression of BAF155 in these cells leads to a reduction in cell number due to replicative senescence. These BAF155 null cells were also found to be sensitive to Rb-mediated cell cycle arrest. This data imply a role for SWI/SNF member BAF155 in cell cycle control and in turn, tumor progression. To determine the pathways in which SWI/SNF core member SNF5 suppresses tumor progression we utilized mouse models to explore the relationship between the p53 pathway and that of SNF5/INI1 in controlling tumor progression and found that while double heterozygous mice still develop p53 wild type SNF5 null rhabdoid tumors similar to their SNF5+/- littermates, SNF5 loss of heterozygosity is accelerated on a p53+/- background leading to reduced latency and increased penetrance of p53 null SNF5 null rhabdoid tumors in alternate anatomical locations as well as the formation of lymphomas. The resulting rhabdoid tumors were found to express a pattern of markers similar to the human rhabdoid phenotype, solidifying this model as an appropriate recapitulation of human rhabdoid tumors. These studies shed light on the specific roles of SWI/SNF chromatin remodeling complex in tumor suppression
Identification of a core member of the SWI/SNF complex, BAF155/SMARCC1, as a human tumor suppressor gene
Recent studies have established that two core members of the SWI/SNF chromatin remodeling complex, BRG1 and SNF5/INI1, possess tumor-suppressor activity in human and mouse cancers. While the third core member, BAF155, has been implicated by several studies as having a potential role in tumor development, direct evidence for its tumor suppressor activity has remained lacking. Therefore, we screened for BAF155 deficiency in a large number of human tumor cell lines. We identified two cell lines, the SNUC2B colon carcinoma and the SKOV3 ovarian carcinoma, displaying a complete loss of protein expression while maintaining normal levels of mRNA expression. The SKOV3 cell line possesses a heterozygous 4 bp deletion that results in an 855AA truncated protein, while the cause of the loss of BAF155 expression in the SNUC2B cell line appears due to a post-transcriptional error. However, the lack of detectable BAF155 expression did not affect sensitivity to RB-mediated cell cycle arrest. Re-expression of full length but not a truncated form of BAF155 in the two cancer cell lines leads to reduced colony forming ability characterized by replicative senescence but not apoptosis. Collectively, these data suggest that loss of BAF155 expression represents another mechanism for inactivation of SWI/SNF complex activity in the development in human cancer. Our results further indicate that the c-terminus proline-glutamine rich domain plays a critical role in the tumor suppressor activity of this protein
Inactivation of SNF5 cooperates with p53 loss to accelerate tumor formation in Snf5 +/− ; p53 +/− mice
Malignant rhabdoid tumors (MRTs) are poorly differentiated pediatric cancers that arise in various anatomical locations and have a very poor outcome. The large majority of these malignancies are caused by loss of function of the SNF5/INI1 component of the SWI/SNF chromatin remodeling complex. However, the mechanism of tumor development associated with SNF5 loss remains unclear. Multiple studies have demonstrated a role for SNF5 in the regulation of cyclin D1, p16INK4A and pRbf activities suggesting it functions through the SWI/SNF complex to affect transcription of genes involved in cell cycle control. Previous studies in genetically engineered mouse models (GEMM) have shown that loss of SNF5 on a p53 null background significantly accelerates tumor development. Here, we use established GEMM to further define the relationship between the SNF5 and p53 tumor suppressor pathways. Combined haploinsufficiency of p53 and Snf5 leads to decreased latency for MRTs arising in alternate anatomical locations but not for the standard facial MRTs. We also observed acceleration in the appearance of T-cell lymphomas in the p53+/-;Snf5+/- mice. Our studies suggest that loss of SNF5 activity does not bestow a selective advantage on the p53 spectrum of tumors in the p53+/-;Snf5+/- mice. However, reduced p53 expression specifically accelerated the growth of a subset of MRTs in these mice
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Identification of a core member of the SWI/SNF complex, BAF155/SMARCC1, as a human tumor suppressor gene
Recent studies have established that two core members of the SWI/SNF chromatin remodeling complex, BRG1 and SNF5/INI1, possess tumor-suppressor activity in human and mouse cancers. While the third core member, BAF155, has been implicated by several studies as having a potential role in tumor development, direct evidence for its tumor suppressor activity has remained lacking. Therefore, we screened for BAF155 deficiency in a large number of human tumor cell lines. We identified two cell lines, the SNUC2B colon carcinoma and the SKOV3 ovarian carcinoma, displaying a complete loss of protein expression while maintaining normal levels of mRNA expression. The SKOV3 cell line possesses a heterozygous 4 bp deletion that results in an 855AA truncated protein, while the cause of the loss of BAF155 expression in the SNUC2B cell line appears due to a post-transcriptional error. However, the lack of detectable BAF155 expression did not affect sensitivity to RB-mediated cell cycle arrest. Re-expression of full length but not a truncated form of BAF155 in the two cancer cell lines leads to reduced colony forming ability characterized by replicative senescence but not apoptosis. Collectively, these data suggest that loss of BAF155 expression represents another mechanism for inactivation of SWI/SNF complex activity in the development in human cancer. Our results further indicate that the c-terminus proline-glutamine rich domain plays a critical role in the tumor suppressor activity of this protein
Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals
International audienceAbstract Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) ( P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% ( P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P < 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis
International audienc
Predicting 90-day survival of patients with COVID-19: Survival of Severely Ill COVID (SOSIC) scores
International audienceBackground Predicting outcomes of critically ill intensive care unit (ICU) patients with coronavirus-19 disease (COVID-19) is a major challenge to avoid futile, and prolonged ICU stays. Methods The objective was to develop predictive survival models for patients with COVID-19 after 1-to-2 weeks in ICU. Based on the COVID–ICU cohort, which prospectively collected characteristics, management, and outcomes of critically ill patients with COVID-19. Machine learning was used to develop dynamic, clinically useful models able to predict 90-day mortality using ICU data collected on day (D) 1, D7 or D14. Results Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7, and SOSIC-14 scores were constructed with 4244, 2877, and 1349 patients, respectively, randomly assigned to development or test datasets. The three models selected 15 ICU-entry variables recorded on D1, D7, or D14. Cardiovascular, renal, and pulmonary functions on prediction D7 or D14 were among the most heavily weighted inputs for both models. For the test dataset, SOSIC-7’s area under the ROC curve was slightly higher (0.80 [0.74–0.86]) than those for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 (0.76 [0.68–0.83]). Similarly, SOSIC-1 and SOSIC-7 had excellent calibration curves, with similar Brier scores for the three models. Conclusion The SOSIC scores showed that entering 15 to 27 baseline and dynamic clinical parameters into an automatable XGBoost algorithm can potentially accurately predict the likely 90-day mortality post-ICU admission (sosic.shinyapps.io/shiny). Although external SOSIC-score validation is still needed, it is an additional tool to strengthen decisions about life-sustaining treatments and informing family members of likely prognosis
Correction to: Characteristics and prognosis of bloodstream infection in patients with COVID‑19 admitted in the ICU: an ancillary study of the COVID‑ICU study
International audienc
Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study
International audienceBackground: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (> 70 years old) with COVID-19 admitted in the intensive care unit (ICU). Methods: Characteristics, management, and prognosis of critically ill old patients (> 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality. Results: The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72–78] years). Fifty-three percent, 31%, and 16% were 70–74, 75–79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2–3). Upon admission, the PaO2/FiO2 ratio was 154 (105–222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24–2.27; p < 0·001). Conclusion: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission