9,710 research outputs found
Lasing in Strong Coupling
An almost ideal thresholdless laser can be realized in the strong-coupling
regime of light-matter interaction, with Poissonian fluctuations of the field
at all pumping powers and all intensities of the field. This ideal scenario is
thwarted by quantum nonlinearities when crossing from the linear to the
stimulated emission regime, resulting in a universal jump in the second order
coherence, which measurement could however be used to establish a standard of
lasing in strong coupling.Comment: 5 pages, 2 figure
Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC
We discuss lepton flavour violating processes induced in the production and
decay of heavy right-handed neutrinos at the LHC. Such particles appear in
left-right symmetrical extensions of the Standard Model as the messengers of
neutrino mass generation, and can have masses at the TeV scale. We determine
the expected sensitivity on the right-handed neutrino mixing matrix, as well as
on the right-handed gauge boson and heavy neutrino masses. By comparing the
sensitivity of the LHC with that of searches for low energy LFV processes, we
identify favourable areas of the parameter space to explore the complementarity
between LFV at low and high energies.Comment: 34 pages, 16 figures, PRD versio
Production and decays of supersymmetric Higgs bosons in spontaneously broken R-parity
We study the mass spectra, production and decay properties of the lightest
supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously
broken R-parity (SBRP). We compare the resulting mass spectra with expectations
of the Minimal Supersymmetric Standard Model (MSSM), stressing that the model
obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how
the presence of the additional scalar singlet states affects the Higgs
production cross sections, both for the Bjorken process and the "associated
production". The main phenomenological novelty with respect to the MSSM comes
from the fact that the spontaneous breaking of lepton number leads to the
existence of the majoron, denoted J, which opens new decay channels for
supersymmetric Higgs bosons. We find that the invisible decays of CP-even
Higgses can be dominant, while those of the CP-odd bosons may also be sizeable.Comment: 21 pages, 8 figures; minor changes, final version for publicatio
Degenerate neutrinos from a supersymmetric A_4 model
We investigate the supersymmetric A_4 model recently proposed by Babu, Ma and
Valle. The model naturally gives quasi-degenerate neutrinos that are bi-largely
mixed, in agreement with observations. Furthermore, the mixings in the quark
sector are constrained to be small, making it a complete model of the flavor
structure. Moreover, it has the interesting property that CP-violation in the
leptonic sector is maximal (unless vanishing). The model exhibit a close
relation between the slepton and lepton sectors and we derive the slepton
spectra that are compatible with neutrino data and the present bounds on
flavor-violating charged lepton decays. The prediction for the branching ratio
of the decay tau -> mu gamma has a lower limit of 10^{-9}. In addition, the
overall neutrino mass scale is constrained to be larger than 0.3 eV. Thus, the
model will be tested in the very near future.Comment: 11 pages, 6 figures. Talk given at the International Workshop on
Astroparticle and High Energy Physics (AHEP), Valencia, Spain, 14-18 Oct.
200
Minimal supergravity radiative effects on the tri-bimaximal neutrino mixing pattern
We study the stability of the Harrison-Perkins-Scott (HPS) mixing pattern,
assumed to hold at some high energy scale, against supersymmetric radiative
corrections. We work in the framework of a reference minimal supergravity model
(mSUGRA) where supersymmetry breaking is universal and flavor-blind at
unification. The radiative corrections considered include both RGE running as
well as threshold effects. We find that in this case the solar mixing angle can
only increase with respect to the HPS reference value, while the atmospheric
and reactor mixing angles remain essentially stable. Deviations from the solar
angle HPS prediction towards lower values would signal novel contributions from
physics beyond the simplest mSUGRA model.Comment: 13 pages, 3 figures; added reference; final version for publicatio
Open-beauty production in Pb collisions at =5 TeV: effect of the gluon nuclear densities
We present our results on open beauty production in proton-nucleus collisions
for the recent LHC Pb run at =5 TeV. We have analysed the
effect of the modification of the gluon PDFs in nucleus at the level of the
nuclear modification factor. Because of the absence of measurement in
collisions at the same energy, we also propose the study of the
forward-to-backward yield ratio in which the unknown proton-proton yield
cancel. Our results are compared with the data obtained by LHCb collaboration
and show a good agreement.Comment: 6 pages, 3 figures, Proceedings IS2013 submitted to Nuclear Physics
Two-photon spectra of quantum emitters
We apply our recently developed theory of frequency-filtered and
time-resolved N-photon correlations to study the two-photon spectra of a
variety of systems of increasing complexity: single mode emitters with two
limiting statistics (one harmonic oscillator or a two-level system) and the
various combinations that arise from their coupling. We consider both the
linear and nonlinear regimes under incoherent excitation. We find that even the
simplest systems display a rich dynamics of emission, not accessible by simple
single photon spectroscopy. In the strong coupling regime, novel two-photon
emission processes involving virtual states are revealed. Furthermore, two
general results are unraveled by two-photon correlations with narrow linewidth
detectors: i) filtering induced bunching and ii) breakdown of the
semi-classical theory. We show how to overcome this shortcoming in a
fully-quantized picture.Comment: 27 pages, 8 figure
Exciting polaritons with quantum light
We discuss the excitation of polaritons---strongly-coupled states of light
and matter---by quantum light, instead of the usual laser or thermal
excitation. As one illustration of the new horizons thus opened, we introduce
Mollow spectroscopy, a theoretical concept for a spectroscopic technique that
consists in scanning the output of resonance fluorescence onto an optical
target, from which weak nonlinearities can be read with high precision even in
strongly dissipative environments.Comment: 5 pages, 3 figure
Predicting Neutrinoless Double Beta Decay
We give predictions for the neutrinoless double beta decay rate in a simple
variant of the A_4 family symmetry model. We show that there is a lower bound
for the neutrinoless double beta decay amplitude even in the case of normal
hierarchical neutrino masses, corresponding to an effective mass parameter
|m_{ee}| >= 0.17 \sqrt{\Delta m^2_{ATM}}. This result holds both for the CP
conserving and CP violating cases. In the latter case we show explicitly that
the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We
conclude therefore that in our scheme, neutrinoless double beta decay may be
accessible to the next generation of high sensitivity experiments.Comment: 4 pages, 5 figures, 1 tabl
- …