5,569 research outputs found
Spectral averaging techniques for Jacobi matrices
Spectral averaging techniques for one-dimensional discrete Schroedinger
operators are revisited and extended. In particular, simultaneous averaging
over several parameters is discussed. Special focus is put on proving lower
bounds on the density of the averaged spectral measures. These Wegner type
estimates are used to analyze stability properties for the spectral types of
Jacobi matrices under local perturbations
Interannual signals in length of day and atmospheric angular momentum
International audienceAtmospheric angular momentum (AAM) and length of day (LOD) series are investigated for their characteristics on interannual time scales during the half-century period 1949 to 1998. During this epoch, the interannual variability in LOD can be separated naturally into three bands: a quasi-biennial, a triennial-quadrennial and one at six-seven years. The atmosphere appears to excite the first two bands, while it does not contribute to the last. Considering the quasi-biennial (QB) band alone, the atmosphere appears to excite most of its signal in LOD, but it arises from separate fluctuations with stratospheric and tropospheric origin. Thus, although close in frequency, stratospheric and tropospheric processes differ in their amplitude and phase variability. The time shift can be noted especially during the strong El Niño events of 1982-83 and 1997-98 when both processes have positive phase and thus combine to help produce particularly strong peak in AAM and LOD. In addition, we have reconfirmed the downward propagation in the stratosphere and upward propagation in the troposphere of AAM observed in earlier studies for other variables. In the triennial-quadrennial (TQ) band, time-variable spectral analyses reveal that LOD and AAM contain strong variability, with periods shorter than four years before 1975 and longer thereafter. This signal originates mainly within the troposphere and propagates upwards from the lower to the higher layers of the troposphere. According to a zonal analysis, an equatorial poleward mode, strongly linked to the SOI, explains more than 60% of the total variability at these ranges. In addition, this study also indicates that an equatorward mode, originating within polar latitudes, explains, on average, more than 15% of the triennial-quadrennial oscillation (TQO) variability in AAM, and up to 30% at certain epochs. Finally, a six year period in LOD noted in earlier studies, as well as in lengthier series covering much of the century, is found to be absent in atmospheric excitations, and it is thus likely to arise from mantle/core interactions
Work and information processing in a solvable model of Maxwell's demon
We describe a minimal model of an autonomous Maxwell demon, a device that
delivers work by rectifying thermal fluctuations while simultaneously writing
information to a memory register. We solve exactly for the steady-state
behavior of our model, and we construct its phase diagram. We find that our
device can also act as a "Landauer eraser", using externally supplied work to
remove information from the memory register. By exposing an explicit,
transparent mechanism of operation, our model offers a simple paradigm for
investigating the thermodynamics of information processing by small systems.Comment: Main Text (6 pages, 3 figures) + Suppl. Info. (3 pages). To appear in
PNA
Extracellular cysteine in connexins: Role as redox sensors
Indexación: Scopus.Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.http://journal.frontiersin.org/article/10.3389/fphys.2016.00001/ful
ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC
The Energetic Costs of Cellular Computation
Cells often perform computations in response to environmental cues. A simple
example is the classic problem, first considered by Berg and Purcell, of
determining the concentration of a chemical ligand in the surrounding media. On
general theoretical grounds (Landuer's Principle), it is expected that such
computations require cells to consume energy. Here, we explicitly calculate the
energetic costs of computing ligand concentration for a simple two-component
cellular network that implements a noisy version of the Berg-Purcell strategy.
We show that learning about external concentrations necessitates the breaking
of detailed balance and consumption of energy, with greater learning requiring
more energy. Our calculations suggest that the energetic costs of cellular
computation may be an important constraint on networks designed to function in
resource poor environments such as the spore germination networks of bacteria.Comment: 9 Pages (including Appendix); 4 Figures; v3 corrects even more typo
Dynamic Simulation and Optimization for Arthrospira platensis Growth and C-Phycocyanin Production
This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b03102.C-phycocyanin is a high-value bioproduct synthesized from cyanobacterium Arthrospira platensis. To facilitate its application, advanced dynamic models were built to simulate the complex effects of light intensity, light attenuation and nitrate concentration on cell growth and pigment production in the current research. By comparing these models against the experimental results, their accuracy was verified in both batch and fed-batch processes. Three key findings are presented in this work. First, a noticeable difference between the optimal light intensity for cell growth (282 μmol m-2 s-1) and phycocyanin synthesis (137 μmol m-2 s-1) is identified. Second, light attenuation is demonstrated to be the primary factor causing the decrease of intracellular phycocyanin content instead of nitrate concentration in the fed-batch process, while it has no significant effect on total phycocyanin production. Finally, although high nitrate concentration can enhance cell growth, it is demonstrated to suppress intracellular phycocyanin accumulation in a long-term operation.Author E. A. del Rio-Chanona is funded by CONACyT scholarship No. 522530 and the Secretariat of Public Education and the Mexican government. This work was also supported by the National High Technology Research and Development Program 863, China (No. 2014AA021701) and the National Marine Commonwealth Research Program, China (No. 201205020-2)
Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: Model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency
This research explores the photofermentation of glycerol to hydrogen by Rhodopseudomonas palus-
tris, with the objective to maximise hydrogen production. Two piecewise models are designed to
simulate the entire growth phase of R. palustris; a challenge that few dynamic models can accomplish.
The parameters in both models were fitted by the present batch experiments through the
solution of the underlying optimal control problems by means of stable and accurate discretisation
techniques. It was found that an initial glutamate to glycerol ratio of 0.25 was optimal, and
was independent of the initial biomass concentration. The glycerol conversion efficiency was found
to depend on initial biomass concentration and its computational peak is 64.4%. By optimising
a 30-day industrially relevant batch process, the hydrogen productivity was improved to be 37.7
mL·g biomass-1·hr-1 and the glycerol conversion efficiency was maintained at 58%. The models can
then be applied as the connection to transfer biohydrogen production from laboratory scale into
industrial scale.Authors N. Xiao and
Dr. K. T. Mahbubani are funded through the KACST-Cambridge Center for Advanced Material
Manufacture, the author E. A. del Rio-Chanona is found by CONACyT scholarship No. 522530
from the Secretariat of Public Education and the Mexican government.This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0009250915001815
Ischemia induces cell proliferation and neurogenesis in the gerbil hippocampus in response to neuronal death
We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ)
- …
