research

The Energetic Costs of Cellular Computation

Abstract

Cells often perform computations in response to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds (Landuer's Principle), it is expected that such computations require cells to consume energy. Here, we explicitly calculate the energetic costs of computing ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg-Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments such as the spore germination networks of bacteria.Comment: 9 Pages (including Appendix); 4 Figures; v3 corrects even more typo

    Similar works

    Full text

    thumbnail-image

    Available Versions