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Abstract

This research explores the photofermentation of glycerol to hydrogen by Rhodopseudomonas palus-

tris, with the objective to maximise hydrogen production. Two piecewise models are designed to

simulate the entire growth phase of R. palustris; a challenge that few dynamic models can accom-

plish. The parameters in both models were �tted by the present batch experiments through the

solution of the underlying optimal control problems by means of stable and accurate discretisa-

tion techniques. It was found that an initial glutamate to glycerol ratio of 0.25 was optimal, and

was independent of the initial biomass concentration. The glycerol conversion e�ciency was found

to depend on initial biomass concentration and its computational peak is 64.4%. By optimising

a 30-day industrially relevant batch process, the hydrogen productivity was improved to be 37.7

mL·g biomass-1·hr-1 and the glycerol conversion e�ciency was maintained at 58%. The models can

then be applied as the connection to transfer biohydrogen production from laboratory scale into

industrial scale.
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1. Introduction

Hydrogen is considered to be one of the fuels for the future with the highest potential, as it has

a high combustion energy and the combustion product is only water which is totally environmental

friendly[1, 2]. Because of its advantages, hydrogen is considered to be a promising clean transport

fuel for the future [3, 4]. Currently, photosynthetic bacteria such as purple non-sulphur (PNS)

bacteria are the best prospective microorganisms generating biological hydrogen compared to other

typical used microorganisms such as green algae and cyanobacteria [5]. The unique advantages

of PNS bacteria are their high conversion e�ciency of organic carbon source to hydrogen, lack of

oxygen generation during photosynthesis and ability to use broad spectra of light wavelengths [5].

These factors contribute to the feasibility of PNS bacteria being used for industrial biohydrogen

production.

1.1. Biohydrogen production

Rhodopseudomonas palustris, a purple non-sulphur bacterium, is known to produce good yields

of hydrogen during anaerobic photoheterotrophic growth, which is the reason it was chosen for

this study. It is capable of converting molecular nitrogen (N2) into ammonia (NH3) for protein

synthesis during cell growth. Additionally H+ ions from the electron donors such as organic carbon

sources are converted to hydrogen gas (H2) by the enzyme nitrogenase. Reduction energy obtained

from light as well as carbon oxidation is required for both cell growth and H2 production. If N2

is removed, all substrate and energy are theoretically directed towards H2 production without cell

growth, i.e. the nitrogenase performs as a hydrogenase converting H+ ions to H2 [6, 7].Extensive

research to improve the performance of PNS bacteria hydrogen production, for instance, comparing

di�erent organic carbon sources such as glycerol, lactate and acetate have been conducted to explore

the carbon source conversion e�ciency for R. palustris growth and hydrogen production [5, 8].

Meanwhile, the scale-up of biohydrogen production process from di�erent species has been

widely conducted recently. For green algal hydrogen production, a 21-day fed-batch process (13.6

mL H2·g biomass-1·hr-1) and a 23-day fed-batch process (1.8 mL H2·g biomass-1·hr-1) have been

reported by Vijayaraghavan et al. [9], Kim et al. [10], respectively. For cyanobacterial hydrogen
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production, a 31-day continuous process has been designed by Dechatiwongse et al. [11] (11.1 mL

H2·g biomass-1·hr-1). For PNS hydrogen production, a 30-day fed-batch process (37.9 mL H2·g

biomass-1·hr-1) and a 24-day fed-batch process (16.7 mL H2·g biomass-1·hr-1) have been developed

by Boran et al. [12], Lee et al. [13], respectively. By comparing the average hydrogen productivity

of each process, it is seen that PNS shows the best prospective due to its highest productivity.

1.2. Methods for biohydrogen process simulation and optimisation

However, unresolved problems such as determining the e�ects of light intensity on the growth

rate of R. palustris, hydrogen production, optimal ratio of nitrogen source to organic carbon source

(N/C ratio) and photobioreactor con�guration still restrict the application of PNS bacteria in a

commercial photofermentation process [5]. One feasible way to solve these problems is to design

a process simulation and optimisation model, as it is quite time consuming to solve such prob-

lems purely through experiments. Two methods are generally considered: the response surface

methodology (RSM) and dynamic simulation.

RSM is a statistical technique which explores the relationship between several decision variables

and one or more response variables [14]. The main idea is to use a sequence of designed experiments

to obtain an optimal response. A second-degree polynomial model is usually used to �t experimental

results [15]. The detailed introduction of RSM and statistical experimental design methods can be

found in Box and Wilson [16], Mead and Pike [17]. Because the decision variables and response

variables are assumed to be related by a polynomial equation, no kinetic information of bioreactions

is needed in this method and the biosystem is e�ectively treated as a black box. Therefore, this

method is very convenient for implementation and has been extensively utilised for the optimisation

of operating conditions in di�erent fermentation processes [18, 19].

However, several problems of RSM restrict its applicability in general bioprocess optimisation.

Relationships between response variables (such as carbon source conversion e�ciency) and decision

variables (light intensity, initial nutrient concentration etc. etc.) are very complicated and cannot

be captured by simple polynomial models. Thus a quadratic model may lead to large errors when

determining the optimal value of decision variables, and the accuracy of RSM is strongly dependent
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on the strategy of experimental design. Furthermore, this method is not able to simulate the

dynamic course of a fermentation process as time is not involved in this method. As a result, RSM

can only provide rough optimal values [16] and is not selected for the present study.

Dynamic models, on the other hand, are constructed based on the biochemical mechanisms of

microorganisms ,and have been widely applied to simulate di�erent fermentation processes. Com-

pared to RSM which treats the biosystem as a black box, the dynamic simulation approach is more

accurate and the parameters in the models are characterised by physical meanings [20]. To repre-

sent accurately each growth phase, di�erent dynamic models have been proposed [21, 22, 23, 24]

to take into account the e�ect of nutrient concentration, light intensity, temperature and pH so as

to characterise cell growth and bioproduct production. Despite its advantages and generality, two

challenges strongly limit the use of dynamic simulation using mechanistic models.

First, because of the complex metabolic mechanisms of microorganisms, a fermentation process

generally includes di�erent microorganism growth phases, from the lag phase to the decay phase

with the change of operating conditions. It is very di�cult to construct a dynamic model capable

of simulating the whole bioprocess by capturing the behaviour of the system through all these

phases. For example, although di�erent dynamic models have been proposed to simulate PNS

bacteria and green algal hydrogen processes recently [25, 26, 27, 28], most of them are only able to

simulate the exponential growth and stationary phases. They fail to simulate the decay phase, where

cells commence to die, and the secondary growth phase, where nutrients have been consumed and

hydrogen is mainly produced. Therefore, they are not suitable to design and optimise the operating

conditions in an adequate fashion. This is a general problem in biochemical process simulation by

mechanistic models, in that the underlying process mechanisms are not fully understood and hence

di�cult to correlate with kinetic expressions.

Parameter estimation in dynamic models is the other challenging task. Although the param-

eter estimation process is also based on the least-squares principle, discretisation of di�erential

equations has to be implemented before parameter optimisation. Due to the high nonlinearity of

dynamic models in bioprocesses, simple discretisation strategies such as explicit Euler methods

are inadequate, being unstable when faced with sti� systems [29]. Sti� systems represent coupled
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dynamic systems having components varying with very di�erent time scales [30]. In recent models

[22, 25, 24, 27] biomass concentration during processing does not change fast, but the limiting nu-

trient concentration either decreases rapidly in a batch process or increases suddenly in a fed-batch

process after replenishment. However, values of parameters in these models were either calculated

by an explicit Euler method or obtained from other publications in which experimental operating

conditions and microorganism species were not exactly the same [22, 25, 24, 27]. The accuracy of

these models therefore cannot be guaranteed.

To solve the above challenges, the current research aims to construct a model which is capable of

simulating the most of the growth phases of in the hydrogen production process and guarantee the

high accuracy of parameter estimation. Based on the dynamic model developed, the current research

also explores the e�ects of operating conditions such as starting nutrient concentrations, carbon

source conversion e�ciency and fermentation operating time on hydrogen production. Furthermore,

a short-term photofermentation process lasting for 30 days (720 hours) will also be constructed by

the present simulation work to analyse the optimal operating condition for R. palustris biohydrogen

production, and to compare with the the previous 30-day and 24-day PNS hydrogen production

processes [12, 13].

2. Experiment methods

2.1. Fermentation of R. palustris

The cell line R. palustris, with strain designation ATH 2.1.37 (NCIB 11774) was purchased

from American Tissue Culture Collection as a freeze-dried axenic sample. For the experiment, R.

palustris was initially cultivated in nitrogen �xing photosynthetic medium [31] with glycerol as the

carbon source and sodium glutamate as the nitrogen source. R. palustris is assumed to have a

formula of CH1.8N0.8O0.38 [32]; the concentrations of glycerol and sodium glutamate supplemented

into the growth medium were selected as 10 mM and 5.4 mM respectively, ensuring the carbon

to nitrogen ration is 1:0.18 for the cell growth stage. As the carbon source becomes limiting,

the bacteria reached the stationary phase. The cells were harvested, centrifuged to remove any

remaining nitrogen source, and diluted with fresh medium to a �xed cell concentration within the
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exponential growth phase (OD660=0.5). The cell mixture was re-cultivated in 10 mM glycerol for

the commencement of the non-growing hydrogen production stage. Argon was sparged into the

medium headspace to create anaerobic and nitrogen-free conditions. An incandescent light source

was selected, and the light intensity was kept at 174 W/m2. The environmental temperature was

kept at 25 ± 2 °C.

2.2. Analysis techniques

The concentration of glycerol in the medium was determined by an adapted method to determine

glycerol concentration in biodiesel [33]. A ninhydrin colorimetric method described by Wang [34]

was used to measure glutamate concentration. The gas volume was measured by water replacement,

while the gas composition was analysed by gas chromatography (GC). The biomass concentration

was determined by optical density using an absorbance spectrophotometer at 660 nm.

3. Methodology of model construction

3.1. Dynamic model construction

From the experiment results, three growth phases of R. palustris are found. An initial lag phase,

which is not considered a growth phase for model construction. This is followed by the primary

growth phase where bacteria grows very fast because of the presence of both nitrogen and carbon

sources at high unlimited concentrations. Once the glutamate is depleted, bacteria continue to grow

for a short period using the remaining glycerol present. This secondary growth phase occurs as cells

can consume the nitrogen quota (intracellular nitrogen source) reserved from the primary growth

phase. The secondary growth phase is slower than the primary growth phase and has a decreasing

growth rate with time as the nitrogen quota is consumed.

The secondary growth phase stops when nitrogen quota falls below the minimum threshold. This

commences the stationary phase, where the biomass concentration is maintained by the presence

and consumption of glycerol. For the current experimental work, the secondary growth phase is
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maintained for less than 90 hours, signi�cantly shorter than the primary growth and the stationary

phases (more than 200 hours each).

Hydrogen production is known to take place in all of three growth phases, suggesting that

glutamate does not inhibit hydrogen production (the secondary growth phase is glutamate-free).

All the three growth phases will be included in the model development. To construct an accurate

dynamic model able to simulate the three growth periods of R. palustris and determine the in�uence

of limiting nutrient on bacteria growth; two modi�ed models both originating from the Droop model

and the Contois model are considered for the current simulation [20].

Parameters for the models can not be accurately calculated if the experimental results including

the three growth phases are used simultaneously, as di�erent growth phases are dominated by

distinct and individual growth mechanisms. To solve this problem, piecewise models are developed

to decompose the modi�ed models into di�erent sub-models which correspond to di�erent growth

phases. Parameters in each sub-model will be accurately �tted to experimental results. Switch

functions, similar to the Heaviside step function but di�erentiable, are used to combine the sub-

models and mediate the start and termination steps in each phase [35, 36].

3.1.1. The piecewise Droop model

The Droop model is very common for simulation of microorganism fermentation[20]. In the

Droop model, the growth rate of microorganism is not only a�ected by the concentration of limiting

nutrients, but also decided by the intracellular concentration of the limiting nutrient, which is

usually termed as nutrient quota (mg nutrient/g biomass) [20]. Equations (1a) to (1e) show the

original Droop model.

dX

dt
= µmax · f (Q) ·X (1a)

dQ

dt
= YS ·

S

S +KS
− µmax · f (Q) ·Q (1b)
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dS

dt
= −YS ·

S

S +KS
·X (1c)

dP

dt
= YP ·

S

S +KS
·X (1d)

f (Q) = 1− kQ
Q

(1e)

The Droop model assumes that the production rate of fermentation product is proportional to

microorganism growth and can be calculated by Equation (1d). The current experimental study

determined that non-growing R. palustris are still able to continuously generate hydrogen, thus

the original Droop model has to be modi�ed. Equation (1d) is thereby modi�ed to Equation (2)

originating from the Luedeking�Piret Model [25]. The consumption rate of glycerol is also modi�ed

from Equation (1c) to Equation (3). In Equation (3), the �rst term on the right-hand-side rep-

resents the consumption rate of substrate due to cell growth, and the second term represents the

consumption rate of substrate due to cell maintenance. Similarly, the �rst term on the right-hand-

side of Equation (2) denotes the growth-associated production rate, while the second term denotes

the growth-independent production rate.

dP

dt
= YP1 ·

dX

dt
+ YP2 ·X (2)

dS

dt
= −YS1 ·

dX

dt
− YS2 ·X (3)

In the original Droop model, the in�uence of nutrient quota on microorganism growth is deter-

mined by f (Q), usually expressed as Equation (1e) (Vatcheva et al. 20). However, Equation (1e)

lacks a theoretical explanation and previous research [37] has declared that it is not applicable

for green algae hydrogen production simulation, as the expression of f (Q) is di�cult to deter-

mine. Additionally, as the experiment setup cannot measure nitrogen quota, f (Q) is replaced by a
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normalised nitrogen quota de�ned as Equation (4) for this study.

q =
Q

Q0

(4)

whereQ0 represents the absolute nitrogen quota of R. palustris when the culture media has su�cient

glutamate and glycerol to support the primary growth phase.

Thus, the original Droop models are modi�ed to a piecewise Droop model, which consists of three

sub-models which corresponding to the three growth phases mentioned in Section 3.1. During the

primary growth phase where both glutamate and glycerol are present, it assumes the loss of nitrogen

quota can be rapidly replenished by glutamate; Equation (1a) is thereby replaced by Equation (6)

from the Monod model. During the secondary growth phase where only glycerol is present, it is

acceptable to use an average growth rate, µ0, to replace the in�uence of the nitrogen quota on

bacteria growth, especially as bacteria grows slowly and this phase only lasts for a relatively short

time.

After the depletion of glutamate, the total nitrogen quota (q·X) is a constant because there is no

replenishment. It is easy to calculate the consumption rate of nitrogen in each cell by Equation (5).

The piecewise Droop model is shown from Equations (7a) to (7e).

dq

dt
= − q

X
· dX
dt

(5)

dX

dt
= µmax ·

C

C+KC
· N

N+KN
·X (6)

dX

dt
=


µmax · C

C+KC
· N
N+KN

·X N > 0

µ0 · C
C+KC

·X q > qmin

0 q ≤ qmin

(7a)
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dq

dt
=


Yq · µmax · N

N+KN
− µmax · C

C+KC
· N
N+KN

· q N > 0

−µ0 · C
C+KC

· q q > qmin

0 q ≤ qmin

(7b)

dN

dt
= −YN · µmax ·

N

N+KN
·X (7c)

dC

dt
=


−YC1 · dXdt − YC2 ·X N > 0

−Y ?
C1 · dXdt − Y

?
C2 ·X q > qmin

−Y ??
C2 ·X q ≤ qmin

(7d)

dH2

dt
=


YH21

· dXdt + YH22
·X N > 0

Y ?
H21
· dXdt + Y ?

H22
·X q > qmin

Y ??
H22
·X q ≤ qmin

(7e)

3.1.2. The piecewise Contois model

The Contois model is an improvement of the Droop model [20]. In the Contois model, the

apparent half velocity constant KS · X increases with the increasing biomass concentration, shown

in Equation (8), which leads to a decrease of simulated bacteria growth rate in a higher biomass

concentration. This is because bacteria have an optimum concentration even in the presence of

su�cient nutrients [20]. Hence, the Contois model is more accurate than the Droop model when

biomass concentration is high.

dS

dt
= −YS ·

S

S +KS · S
·X (8)

Similar to the piecewise Droop model, the piecewise Contois model is also divided into three

sub-models. Equations (9a) to (9e) show the details of piecewise Contois model.
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dX

dt
=


µmax · C

C+KC·X ·
N

N+KN·X ·X N > 0

µ0 · C
C+KC·X ·X q > qmin

0 q ≤ qmin

(9a)

dq

dt
=


Yq · µmax · N

N+KN·X − µmax · C
C+KC·X ·

N
N+KN·X · q N > 0

−µ0 · C
C+KC·X · q q > qmin

0 q ≤ qmin

(9b)

dN

dt
= −YN · µmax ·

N

N+KN ·X
·X (9c)

dC

dt
=


−YC1 · dXdt − YC2 ·X N > 0

−Y ?
C1 · dXdt − Y

?
C2 ·X q > qmin

−Y ??
C2 ·X q ≤ qmin

(9d)

dH2

dt
=


YH21

· dXdt + YH22
·X N > 0

Y ?
H21
· dXdt + Y ?

H22
·X q > qmin

Y ??
H22
·X q ≤ qmin

(9e)

3.1.3. Switch functions

Switch functions are used to combine di�erent sub-models and mediate the start and termination

of each sub-model. They are widely used in fermentation process simulation [35, 36]. An example

of a switch function is shown in Equation (10) where by f(x) equals to 1 when x > α, otherwise

f(x) is 0. The sharpness of switch functions is determined by the sharpness parameter γ. Figure 1
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shows the switch function at di�erent values of γ.

f (x) = 0.5 ·

1 +
x− α√

(x− α)2 + γ2

 (10)

In the current research, two switch functions are used to combine the three di�erent growth

phases. Equation (11) is used to combine the primary growth phase with the secondary growth

phase. When glutamate is presented in the culture, Equation (11) equals to 1 and therefore the

growth rate of biomass is calculated by the �rst sub-expression in Equation (7a). When glutamate

is consumed, Equation (11) equals to zero and stimulates the start of the second sub-expression

in Equation (7a). Similarly, Equation (12) is used to combine the secondary growth phase with

the stationary phase. As the transition between di�erent growth phases are fast and smooth, the

sharpness parameter in both switch functions is chosen as 0.1 so that the switch from one sub-

equation to another sub-equation is rapid and errors will not be induced.

F (N) =
N

(N2 + γ2)
0.5 (11)

F (q) = 0.5 ·

(
(q− qmin)

2
)0.5

+ (q− qmin)(
(q− qmin)

2
+ γ2

)0.5 (12)

3.2. Parameter estimation methods

In this section the mathematical method used to obtain parameters in both piecewise models

is described. With the dynamic model designed, several parameters need to be found, to ensure

that the model better re�ects reality. This resulted in a parameter estimation problem where the

parameters that best �t experimental data needed to be determined. The parameter estimation for

the dynamic model was conducted by setting up an optimisation problem. A general optimisation

problem is de�ned as:

min f(x)
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subject to:

h(x) = 0

g(x) ≤ 0

where x ∈ Rn , f(x) : Rn → R , h(x) : Rn → Rm and g(x) : Rn → Rr, n is the number

of variables, m is the number of equality constraints and r is the number of inequality constraints.

The objective of an optimisation problem is to �nd the values of x, for which the minimum value

of f(x) is achieved such that is satis�es the constraints h(x) and g(x).

In order to obtain the parameters that best �t experimental data, the following optimisation

problem was proposed:

min

n∑
i=1

DPi∑
j=1

(xij − dij)2
2

max
i=1,2,...,n

{di}+ min
i=1,2,...,n

{di}
(13)

subject to:

h(x) = 0 (14)

g(x) ≤ 0 (15)

where n is the number of variables for which experimental data is relevant, DP is the number of

data points corresponding to variable xi, dij is the particular data point j corresponding to variable

xi. Kinetic and mass balance equations are written in Equation (14), and bound constraints are

written in Equation (15).

The optimisation problem (Equations (13) to (15)) is a least squares problem, where the di�er-

ence between the experimental data points, and the dynamic model is minimised. The latter term

2
max

i=1,2,...,n
{di}+ min

i=1,2,...,n
{di} is a weight factor appended to the objective function which is unique to
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each variable's data points.

Several methodologies exist to optimise a system of di�erential algebraic equations (DAE).

Computational study [38] has shown that the best approach to optimise a DAE system is to fully

discretise the system, transforming the system of DAE into a series of nonlinear algebraic equations

and then nonlinear optimisation is used to solve the problem. This method was used to optimise

the parameters for this dynamic model. Discretisation of the DAE system in the current work was

carried out through an implicit Euler method; given its implicit nature this method is very robust

even when faced with sti� systems (presents A-stability) [29], and thus the accuarcy of current

parameter estimation process can be guaranteed. The system layout and optimisation was done

through Pyomo [39], using IPOPT [40] as the optimisation library.

4. Results and discussion

4.1. Parameter estimation in piecewise models

Parameters in the piecewise Droop model and the piecewise Contois model are shown in Table 1.

To verify the accuracy of parameters calculated in the current study, Figures 2 and 3 compare the

experimental results with the simulation results of the two piecewise models. Both of the piecewise

models �t experimental results in di�erent growth phases very well, which indicates that the current

piecewise models can be further used for PNS biohydrogen process design and optimisation.

4.2. E�ects of operating conditions on hydrogen production

The piecewise models are constructed to analyse the in�uence of operating conditions on hydro-

gen production. These are the ratio of initial glutamate concentration to initial glycerol concentra-

tion (N/C ratio); initial biomass concentration; operating time on hydrogen production and glycerol

conversion e�ciency. In this section the piecewise Contois model is selected as the simulation results

of both piecewise models are very similar.

4.2.1. E�ects of initial N/C ratio

Glycerol is the main carbon source for bacterial growth when glutamate is present, and is the

main driver for hydrogen production along with bacteria maintenance when glutamate is depleted.

Glycerol conversion e�ciency and total hydrogen production are strongly dependent on initial N/C
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ratio. The e�ect of N/C ratio is complicated; a high N/C ratio can facilitate bacteria growth and

improve biomass concentration. The high biomass concentration leads to higher total hydrogen

production (Equation (9e)).However, electrons from glycerol consumption are used mainly for cell

growth instead of hydrogen production when initial N/C ratio is high. As a result, high N/C ratio

also decreases the conversion e�ciency of glycerol and restricts the average hydrogen production.

In this section, the operating condition is shown in Table 2, and the range of N/C ratio is from

0 to 1. Figure 4 shows the in�uence of N/C ratio on glycerol conversion (mol H2/mol glycerol,

Figure 4(a)), hydrogen production (Figure 4(b)) and glutamate utilisation (mol H2/mol glutamate,

Figure 4(c)). Because glutamate does not provide electrons for hydrogen production, this utilisation

parameter is used to balance the investment cost of glutamate and production of hydrogen.

Although glutamate utilisation keeps decreasing with the increasing N/C ratio (Figure 4(c)),

from Figure 4(a) the optimal initial N/C ratio for hydrogen production is found to be 0.27 which is

similar to the experimental result of 0.2 reported by Sabourin-Provost and Hallenbeck [41]. In their

experiments, glycerol concentration was �xed at 10 mM and glutamate concentration was tested

at 0 mM, 2mM, 4 mM and 6mM. They found that the experiment with 2 mM glutamate gave the

highest hydrogen yield. Theoretically, the maximum glycerol utilisation is 7 mol H2/mol glycerol

if all glycerol is used for hydrogen production (Equation (16)). The highest glycerol conversion

found in the simulation at a N/C ratio is 3.30 H2/mol glycerol, 47.1% of the theoretical maximum

conversion. This e�ciency is similar with the general acetate conversion e�ciency reported by Oh

[8], but much lower than the previous result of 75% reported by Sabourin-Provost and Hallenbeck

where glycerol was selected as the carbon source [41].

C3H8O3 + 3H2O→ 3CO2 + 7H2 (16)

The e�ects of N/C ratio on glycerol conversion e�ciency can be considered by three case studies.

In the �rst case ((Figure 4(d))): N/C ratio is low, resulting a low glycerol conversion. This is because

low N/C ratio leads to a short primary growth phase and bacteria are not able to grow su�ciently.

As a result, there is not enough bacteria to consume glycerol. In the second case (Figure 4(f)):
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N/C ratio is very high, glutamate concentration is excessive and causes the fermentation process to

proceed in the primary growth phase where most of the electrons provided by glycerol are used for

bacterial growth instead of hydrogen production. A sharp decline of hydrogen production is found,

as a result. Glycerol is depleted further ensuring the low hydrogen production. Because glutamate is

su�cient, the primary growth period lasts for a long time and exhausts most of glycerol. Hydrogen

production is terminated due to the depletion of glycerol and the total hydrogen production is not

dependent on N/C ratio.

In the �nal case (Figure 4(e)), the optimised N/C ratio is around 0.27, the glutamate present

is su�cient to maintain bacterial growth while hydrogen production is markedly increased. The

fermentation process is dominated by the primary growth phase, which is important to guarantee a

high biomass concentration, as well as the secondary growth phase, which is found experimentally

to have the highest hydrogen production rate. Glycerol is almost completely consumed at the end

of the fermentation process, con�rming both hydrogen production and glycerol conversion e�ciency

are much higher than before.

4.2.2. E�ects of initial biomass concentration

The rate of hydrogen production increases with the biomass concentration in the culture. How-

ever, high biomass concentrations result in high consumption of glycerol for bacterial maintenance.

As a result, the trade-o� e�ect of initial biomass concentration on hydrogen production should be

analysed.

The operating conditions in this section is shown in Table 2, and initial biomass concentration

changes from 0.1 g/L to 0.8 g/L. By simulation, the current work found that the optimal N/C ratio

is almost independent (from 0.28 to 0.24) of initial biomass concentration. However, maximum

glycerol conversion increases from 2.89 mol/mol (41.3% of maximum theoretical conversion) to 4.51

mol/mol (64.4% of maximum theoretical conversion) when initial biomass concentration is increased

from 0.1 g/L to 0.8 g/L. The maximum glycerol conversion e�ciency of 64.4% is much closer to

the previous result from Sabourin-Provost and Hallenbeck Sabourin-Provost and Hallenbeck [41].

However, the highest biomass utilisation (mmol H2/ g initial biomass) decreases from 578.0 mmol·g

biomass-1 to 112.75 mmol·g biomass-1 with increasing initial biomass concentration.
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At an optimal N/C ratio (0.25), glycerol is almost completely consumed by bacteria at the

termination of fermentation and independent of the initial biomass concentration. When the initial

biomass concentration is low, much more glycerol is used for bacteria growth rather than hydrogen

production compared to the case when the initial biomass concentration is high. As a result, the

conversion e�ciency of glycerol increases with increasing initial biomass concentration. However, as

more bacteria have to be cultivated for a higher initial biomass concentration, the investment cost

may be increased and biomass utilisation is decreased. Therefore, an intermediate initial biomass

concentration is preferred to balance the glycerol conversion e�ciency and biomass utilisation.

4.2.3. E�ects of operating time

It is also important to �nd the optimal operating time for the fermentation process. Hydrogen

production is increased by extending operating time, the average hydrogen productivity (H2

t ) of

fermentation process may decrease due to the lower hydrogen production rate in the stationary

phase compared to it in the secondary growth phase. To explore the e�ect of operating time on

hydrogen production, the operating time is altered from 80 hours to 300 hours and the detailed

operating condition is shown in Table 2.

By simulation, it is found that the highest average hydrogen productivity is 27.3 mL·g biomass-1·hr-1,

peaking at the point where the operating time is 110 hours. The fermentation process terminates

in the middle of the secondary growth phase when the operating time is 110 hours, instead of the

stationary phase when the operating time is 300 hours. It is because hydrogen production rate in

the secondary growth phase is enhanced by both bacteria growth rate and bacteria biomass concen-

tration (shown in Equation (9e)). With the extension of the operating time, biomass concentration

increases but the bacterial growth rate decreases because of the decreasing concentration of glycerol.

Therefore the hydrogen production rate is decreased due to the trade-o� e�ect.

4.3. Design of short term fermentation process

To design a 30-day batch fermentation process to maximise hydrogen productivity, the initial

biomass concentration in this process is chosen as 0.1 g·L-1, which is a close value to the one used

in previous experimental work [12, 42]. As R. palustris growth rate and hydrogen production rate

are strongly dependent on the concentration of glycerol and glutamate, the optimal initial concen-
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trations of glycerol and glutamate in this process need to be identi�ed. Therefore, in the current

research the initial glycerol concentration changes from 10 mM to 30 mM and the initial glutamate

concentration changes from 2 mM to 10 mM. The optimal concentrations will be determined at the

point where total hydrogen production is maximum.

The optimal operating conditions and results of this process is shown in Table 3. From the

table, the initial N/C ratio of 0.27 is seen to perform the best, similar to the ratio of 0.25 found in

Section 4.2.1. It can be seen that glycerol conversion e�ciency is 58% , lower than the 64.4% found

in Section 4.2.2. This is probably because the initial biomass concentration is not chosen well, as

this value is set similar with previous research for the comparison. Both glutamate and glycerol are

depleted at the end of fermentation process. The hydrogen productivity is found to be 37.7 mL·g

biomass-1·hr-1.

If the fermentation process is terminated at the time where maximum average hydrogen produc-

tivity occurs (mentioned in Section 4.2.3), the current simulation �nds that operating time should

be 13 days and highest hydrogen productivity is 58.4 mL·g biomass-1·hr-1. The operating conditions

and results of this 13-day process is also shown in Table 3. However, in this case glycerol remains

at the end of fermentation process (Table 3) and glycerol conversion e�ciency is only 37%, which

is only 63.8% of the 30-day process and has the potential to increase the material cost. Therefore,

a �nancial analysis is necessary in future work to decide which process is more pro�table.

Compared to the previous research, the current 30-day batch process shows the same hy-

drogen productivity (37.7 mL·g biomass-1·hr-1) with the one reported by Boran et al. [12] (37.9

mL·g biomass-1·hr-1, 30 days) but much higher than that reported by Lee et al. [13] (16.7 mL·g

biomass-1·hr-1, 24 days) as well as by green algal and cyanobacterial processes [9, 10, 23]. Further-

more, as most of the previous processes are designed as fed-batch system, fresh culture has to be

added either continuously or intermittently during operation. Thus additional auxiliary equipment

has to be included and the possibility of contamination is increased compared to the current op-

timised batch process. The comparison indicates that the optimisation of operating conditions is

essential for designing related scale-up processes.

In terms of the future work, light intensity which determines the reduction energy that cells
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can obtain [6, 7] has to be included in the current model, as previous publications found that

both PNS cells growth and hydrogen production are strongly dependent on light intensity [25, 43].

For microorganisms such as PNS and green algae, a low light intensity usually limits cell growth

while intense illumination leads to a photo-inhibition e�ect on cell growth [44, 45]. Therefore,

there is a trade-o� value that optimises photofermentations. In the future work, we thus intend to

include the e�ects of light intensity in the dynamic evolution of the PNS biohydrogen production

process and include its optimal determination. For example, the Aiba model (Equation (17)) can be

embedded in the current models as it is able to describe both photo-limitation and photo-inhibition

[46] a�ecting the speci�c growth rate of cells.

µ =
I

I + ks +
I2

ki

(17)

where μ is speci�c growth rate, I is light intensity, ks is light saturation term and ki is photo-

inhibition term.

5. Conclusions

Two piecewise models were constructed to simulate the biohydrogen production process of R.

palustris using glycerol as the carbon source. Parameters were calculated via discretisation optimi-

sation. An optimal glutamate to glycerol ratio found by simulation was 0.25 by the current model.

It was concluded that the optimal glutamate to glycerol ratio is independent of initial biomass

concentration. The maximum glycerol conversion e�ciency is strongly a�ected by initial biomass

concentration, and computationally peaks at 64.4%. An optimised batch process lasting for 30 days

was proposed in the present study, with a hydrogen productivity of 37.7 mL·g biomass-1·hr-1.
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Table 1: Parameters in the piecewise Droop model.

The piecewise Droop model
Parameter Value Unit Parameter Value Unit
µmax 0.012 hr-1 YC1 23.63 mmol·g-1
µ0 0.012 hr-1 Y ?

C1 56.94 mmol·g-1
KC 3.694 mM YC2 0.0 mmol·g-1·hr-1
K?

C 17.94 mM Y ?
C2 0.0 mmol·g-1·hr-1

qmin 0.830 � Y ??
C2 0.078 mmol·g-1·hr-1

YN 76.58 mmol·g-1 Y ?
H21

3658 mL·g-1
KN 0.507 mM Y ?

H22
1.720 mL·g-1·hr-1

Yq 10.43 � Y ??
H22

4.900 mL·g-1·hr-1
YH21

1547 mL·g-1
The piecewise Contois model

Parameter Value Unit Parameter Value Unit
µmax 0.010 hr-1 YC1 23.70 mmol·g-1
µ0 0.008 hr-1 Y ?

C1 56.48 mmol·g-1
KC 5.425 mM YC2 0.0 mmol·g-1·hr-1
K?

C 33.75 mM Y ?
C2 0.0 mmol·g-1·hr-1

qmin 0.840 � Y ??
C2 0.078 mmol·g-1·hr-1

YN 76.58 mmol·g-1 Y ?
H21

3021 mL·g-1
KN 0.507 mM Y ?

H22
2.535 mL·g-1·hr-1

Yq 10.43 � Y ??
H22

4.900 mL·g-1·hr-1
YH21

1553 mL·g-1
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Table 2: Operating conditions in Section 4.2

Section 4.2.1 Section 4.2.2 Section 4.2.3
Initial biomass concentration 0.20 g·L-1 [0.1 g·L-1, 0.8 g·L-1] 0.20 g·L-1
Initial glutamate concentration [0 mM, 20 mM] [0 mM, 20 mM] 1.8 mM
Initial glycerol concentration 20 mM 20 mM 20 mM
operating time 300 hr 300 hr [80 hr, 300 hr]
Medium volume 200 mL 200 mL 200 mL
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Table 3: Simulation of short-term photofermentation processes

Optimal operating conditions 30-day process 13-day process
Initial biomass concentration 0.10 g·L-1 0.1 g·L-1
Initial glutamate concentration 8.1 mM 8.1 mM
Initial glycerol concentration 30 mM 30 mM
operating time 30 days 13 days
Medium volume 200 mL 200 mL
Simulation Results 30-day process 13-day process
Total hydrogen production 542.4 mL 350.5 mL
Final biomass concentration 1.26 g/L 1.21 g/L
Optimal N/C ratio 0.27 0.27
Glycerol conversion e�ciency 0.58 0.37
Hydrogen productivity 37.7 mL·g biomass-1·hr-1 58.4 mL·g biomass-1·hr-1

Final glutamate concentration 0.0 mM 0.0 mM
Final glycerol concentration 0.0 mM 3.29 mM
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Figure 1: Example of switch function.
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Figure 2: Comparison of experimental results and simulation results of piecewise Contois model. (a), biomass
concentration during the time course of primary growth period; (b), glycerol concentration during the time course
of primary growth period; (c), hydrogen production during the time course of primary growth period; Solid line:
simulation results. Circle points: experimental results.
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Figure 3: Comparison of experimental results and simulation results of piecewise Droop model. (a), biomass con-
centration during the time course of primary growth period; (b), glycerol concentration during the time course of
primary growth period; (c), hydrogen production during the time course of primary growth period; (d), hydrogen
production during the time course of secondary growth period and stationary period. Solid line: simulation results.
Circle points: experimental results.
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Figure 4: Simulation results of e�ects of initial N/C ratio on hydrogen production. (a), Glycerol conversion w.r.t.
initial N/C ratio. (b), hydrogen production and glutamate utilisation w.r.t. initial N/C ratio. (c), glutamate
utilisation w.r.t. initial N/C ratio; (d)~(f), concentration of biomass, nitrogen quota, glycerol and glutamate during
the time course of fermentation process. The relative concentration is de�ned as x (t) /xmax, where x (t) refers to
the concentration of any substrates or biomass: (d), N/C ratio is 0.05. (e), N/C ratio is 0.27. (f), N/C ratio is
0.50. Thick solid line: biomass concentration. Thin solid line: glycerol concentration. Thick dashed line: glutamate
concentration. Thin dashed line: hydrogen production.
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