29 research outputs found
Accuracy, realism and general applicability of European forest models
Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.Peer reviewe
Rethinking European integration history in light of capitalism: the case of the long 1970s
This introduction outlines the possibilities and perspectives of an intertwining between European integration history and the history of capitalism. Although debates on capitalism have been making a comeback since the 2008 crisis, to date the concept of capitalism remains almost completely avoided by historians of European integration. This introduction thus conceptualizes ‘capitalism’ as a useful analytical tool that should be used by historians of European integration and proposes three major approaches for them to do so: first, by bringing the question of social conflict, integral to the concept of capitalism, into European integration history; second, by better conceptualizing the link between European governance, Europeanization and the globalization of capitalism; and thirdly by investigating the economic, political and ideological models or doctrines that underlie European cooperation, integration, policies and institutions. Finally, the introduction addresses the question of the analytical benefits of an encounter between capitalism and European integration history, focusing on the case of the 1970s. This allows us to qualify the idea of a clear-cut rupture, and better highlight how the shift of these years resulted from a complex bargaining that took place in part at the European level
Accuracy, realism and general applicability of European forest models
Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests
Helicobacter pylori phase variation, immune modulation and gastric autoimmunity
Helicobacter pylori can be regarded as a model pathogen for studying persistent colonization of humans. Phase-variable expression of Lewis blood-group antigens by H. pylori allows this microorganism to modulate the host T-helper-1-cell versus T-helper-2-cell response. We describe a model in which interactions between host lectins and pathogen carbohydrates facilitate asymptomatic persistence of H. pylori. This delicate balance, favourable for both the pathogen and the host, could lead to gastric autoimmunity in genetically susceptible individuals