6,628 research outputs found

    Scanning Tunneling Spectroscopy of Suspended Single-Wall Carbon Nanotubes

    Full text link
    We have performed low-temperature STM measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by CVD on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the freestanding portions of the nanotubes. Spatially resolved spectroscopy on the suspended portion of both metallic and semiconducting nanotubes was also achieved, showing a Coulomb-staircase behavior superimposed on the local density of states. The spacing of the Coulomb blockade peaks changed with tip position reflecting a changing tip-tube capacitance

    The physical environment and plant communities of the Messina Experimental Farm

    Get PDF
    A description of the climate, geology and plant communities of the study area is presented. The result of a TWINSPAN classification of 149 relevés was refined by Braun-Blanquet procedures. Eight plant communities of which one is divided into three variations, were distinguished. A hierarchical classification, ecological interpretation and vegetation map delineating the extent of the plant communities, are presented. An agro-ecological quantification of the woody vegetation was done in each plant community

    Landauer-type transport theory for interacting quantum wires: Application to carbon nanotube Y junctions

    Full text link
    We propose a Landauer-like theory for nonlinear transport in networks of one-dimensional interacting quantum wires (Luttinger liquids). A concrete example of current experimental focus is given by carbon nanotube Y junctions. Our theory has three basic ingredients that allow to explicitly solve this transport problem: (i) radiative boundary conditions to describe the coupling to external leads, (ii) the Kirchhoff node rule describing charge conservation, and (iii) density matching conditions at every node.Comment: final version, to be published in PR

    Association of malalignment, muscular dysfunction, proprioception, laxity and abnormal joint loading with tibiofemoral knee osteoarthritis - a systematic review and meta-analysis

    Get PDF
    Background: To investigate (1) the association of specific biomechanical factors with knee osteoarthritis and knee osteoarthritis development, and (2) the impact of other relevant risk factors on this association.Methods: MEDLINE, EMBASE, CINAHL and SPORTDiscus were searched up until April 2017. Studies were included if they fulfilled the following criteria: the study 1) assessed the association of a biomechanical factor with knee osteoarthritis, or knee osteoarthritis development; 2) reported on skeletal malalignment, muscular dysfunction, impaired proprioception, laxity and abnormal loading during gait; 3) was a cohort study with participants developing knee osteoarthritis and participants not developing knee osteoarthritis, or a case-control or cross-sectional study with participants with knee osteoarthritis and without knee osteoarthritis. Risk of bias was assessed with the QUIPS tool and meta-analyses were performed using random effects models.Results: Of 6413 unique studies identified, 59 cross-sectional studies were eligible for meta-analyses (9825 participants, 5328 with knee osteoarthritis). No cohort studies fulfilled the inclusion criteria. Compared with healthy controls, patients with knee osteoarthritis have higher odds of having lower muscle strength, proprioception deficits, more medial varus-valgus laxity and less lateral varus-valgus laxity. Patients with medial knee osteoarthritis have higher odds of having a higher knee adduction moment than healthy controls. Level of evidence was graded as 'very low' to 'moderate' quality. Due to large between study differences moderation of other risk factors on biomechanical risk factors could not be evaluated.Conclusions: Patients with knee osteoarthritis are more likely to display a number of biomechanical characteristics. The causal relationship between specific biomechanical factors and the development of knee osteoarthritis could not be determined as no longitudinal studies were included. There is an urgent need for high quality, longitudinal studies to evaluate the impact of specific biomechanical factors on the development of knee osteoarthritis.Trial Registration: (PROSPERO ID: CRD42015025092)

    Density waves in the shearing sheet IV. Interaction with a live dark halo

    Full text link
    It is shown that if the self-gravitating shearing sheet, a model of a patch of a galactic disk, is embedded in a live dark halo, this has a strong effect on the dynamics of density waves in the sheet. I describe how the density waves and the halo interact via halo particles either on orbits in resonance with the wave or on non-resonant orbits. Contrary to expectation the presence of the halo leads to a very considerable enhancement of the amplitudes of the density waves in the shearing sheet. This effect appears to be the equivalent of the recently reported enhanced growth of bars in numerically simulated stellar disks embedded in live dark halos. Finally I discuss the transfer of linear momentum from a density wave in the sheet to the halo and show that it is mediated only by halo particles on resonant orbits.Comment: 8 pages, 4 figures, accepted by Astron. Astrophy

    Piezoelectrically Actuated Linear Resonators on Ring-shaped Suspensions for Applications in MEMS Phase-sensitive Gyroscope

    Get PDF
    AbstractExcitation of linear resonators by means of thin aluminium nitride piezoelectric films processed on annular (ring-shaped) flexures was investigated. The in-plane resonance modes at 8-45kHz frequencies with quality factors >104 were measured for both single (uni-directional) and double (bi-directional) in-plane degree of freedom devices in vacuum. Annular springs have different spring constants for different directions of deformation allowing efficient decoupling of orthogonal modes in bi-directional symmetric devices. The primary application of the bi-directional resonators is in orbiting-motion MEMS gyroscopes that rely on phase-shift detection induced by external angular rates. To investigate the feasibility of differential piezoactuation for generation of motion in uni- and bi-directional devices by means of thin piezoelectric films processed on supporting annular springs, MEMS resonators were modelled, designed, fabricated and electrically characterized

    Transitivity correlation:A descriptive measure of network transitivity

    Get PDF
    This paper proposes that common measures for network transitivity, based on the enumeration of transitive triples, do not reflect the theoretical statements about transitivity they aim to describe. These statements are often formulated as comparative conditional probabilities, but these are not directly reflected by simple functions of enumerations. We think that a better approach is obtained by considering the probability of a tie between two randomly drawn nodes, conditional on selected features of the network. Two measures of transitivity based on correlation coefficients between the existence of a tie and the existence, or the number, of two-paths between the nodes are developed, and called "Transitivity Phi" and "Transitivity Correlation." Some desirable properties for these measures are studied and compared to existing clustering coefficients, in both random (Erdos-Renyi) and in stylized networks (windmills). Furthermore, it is shown that in a directed graph, under the condition of zero Transitivity Correlation, the total number of transitive triples is determined by four underlying features: size, density, reciprocity, and the covariance between in- and outdegrees. Also, it is demonstrated that plotting conditional probability of ties, given the number of two-paths, provides valuable insights into empirical regularities and irregularities of transitivity patterns
    • …
    corecore