19 research outputs found

    Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis

    Get PDF
    Background: Global and regional prevalence estimates for blindness and vision impairment are important for the development of public health policies. We aimed to provide global estimates, trends, and projections of global blindness and vision impairment. Methods: We did a systematic review and meta-analysis of population-based datasets relevant to global vision impairment and blindness that were published between 1980 and 2015. We fitted hierarchical models to estimate the prevalence (by age, country, and sex), in 2015, of mild visual impairment (presenting visual acuity worse than 6/12 to 6/18 inclusive), moderate to severe visual impairment (presenting visual acuity worse than 6/18 to 3/60 inclusive), blindness (presenting visual acuity worse than 3/60), and functional presbyopia (defined as presenting near vision worse than N6 or N8 at 40 cm when best-corrected distance visual acuity was better than 6/12). Findings: Globally, of the 7·33 billion people alive in 2015, an estimated 36·0 million (80% uncertainty interval [UI] 12·9–65·4) were blind (crude prevalence 0·48%; 80% UI 0·17–0·87; 56% female), 216·6 million (80% UI 98·5–359·1) people had moderate to severe visual impairment (2·95%, 80% UI 1·34–4·89; 55% female), and 188·5 million (80% UI 64·5–350·2) had mild visual impairment (2·57%, 80% UI 0·88–4·77; 54% female). Functional presbyopia affected an estimated 1094·7 million (80% UI 581·1–1686·5) people aged 35 years and older, with 666·7 million (80% UI 364·9–997·6) being aged 50 years or older. The estimated number of blind people increased by 17·6%, from 30·6 million (80% UI 9·9–57·3) in 1990 to 36·0 million (80% UI 12·9–65·4) in 2015. This change was attributable to three factors, namely an increase because of population growth (38·4%), population ageing after accounting for population growth (34·6%), and reduction in age-specific prevalence (–36·7%). The number of people with moderate and severe visual impairment also increased, from 159·9 million (80% UI 68·3–270·0) in 1990 to 216·6 million (80% UI 98·5–359·1) in 2015. Interpretation: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world’s population is causing a substantial increase in number of people affected. These observations, plus a very large contribution from uncorrected presbyopia, highlight the need to scale up vision impairment alleviation efforts at all levels

    Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis

    Get PDF
    Background: Contemporary data on causes of vision impairment and blindness form an important basis for recommendations in public health policies. Refreshment of the Global Vision Database with recently published data sources permitted modeling of cause of vision loss data from 1990 to 2015, further disaggregation by cause, and forecasts to 2020. Methods: Published and unpublished population-based data on the causes of vision impairment and blindness from 1980 to 2015 were systematically analysed. A series of regression models were fit to estimate the proportion of moderate and severe vision impairment (MSVI; defined as presenting visual acuity <6/18 but ≥3/60 in the better eye) and blindness (presenting visual acuity <3/60 in the better eye) by cause by age, region, and year. Findings: Among the projected global population with MSVI (216.6 million; 80% uncertainty intervals [UI] 98.5-359.1), in 2015 the leading causes thereof are uncorrected refractive error (116.3 million; UI 49.4-202.1), cataract (52.6 million; UI 18.2-109.6), age-related macular degeneration (AMD; 8.4 million; UI 0.9-29.5), glaucoma (4.0 million; UI 0.6-13.3) and diabetic retinopathy (2.6 million; UI 0.2-9.9). In 2015, the leading global causes of blindness were cataract (12.6 million; UI 3.4-28.7) followed by uncorrected refractive error (7.4 million; UI 2.4-14.8) and glaucoma (2.9 million; UI 0.4-9.9), while by 2020, these numbers affected are anticipated to rise to 13.4 million, 8.0 million and 3.2 million, respectively. Cataract and uncorrected refractive error combined contributed to 55% of blindness and 77% of MSVI in adults aged 50 years and older in 2015. World regions varied markedly in the causes of blindness, with a relatively low prevalence of cataract and a relatively high prevalence of AMD as causes for vision loss in the High-income subregions. Blindness due to cataract and diabetic retinopathy was more common among women, while blindness due to glaucoma and corneal opacity was more common among men, with no gender difference related to AMD. Conclusions: The numbers of people affected by the common causes of vision loss have increased substantially as the population increases and ages. Preventable vision loss due to cataract and refractive error (reversible with surgery and spectacle correction respectively), continue to cause the majority of blindness and MSVI in adults aged 50+ years. A massive scale up of eye care provision to cope with the increasing numbers is needed if one is to address avoidable vision loss

    Allergotoxicology: Research of Pollutant Influence on the Development of Allergic Reactions

    Get PDF
    Alergotoksikologija je znanstvenoistraživačko područje koje se bavi ispitivanjem utjecaja polutanata (onečišćivača zraka) na nastanak alergijskih reakcija i bolesti. Ispitivanja su prvobitno bila usmjerena na polutante vanjskih prostora, a u novije vrijeme sve više na polutante unutarnjih prostora u kojima ljudi provode većinu vremena. Polutanti po svojoj prirodi mogu biti krute, tekuće ili plinovite čestice, koje se razlikuju s obzirom na veličinu, sastav i izvor iz kojeg nastaju. S obzirom na izvor mogu biti biološkog i nebiološkog podrijetla. Polutanti koji su predmet suvremenih istraživanja s gledišta nastanka alergijskih bolesti su respirabilne krute čestice, ozon, dušični oksidi i bioaerosoli. Mehanizam djelovanja polutanata ovisi o veličini čestica, njihovoj topljivosti i mjestu ulaska u organizam. Dosadašnja ispitivanja su pokazala da različite čestice uvjetuju različite imunosne i neimunosne odgovore u organizmu. Interakcija polutanata i alergena može se zbivati izvan eksponirane osobe, tj. sa samim alergenom ili u eksponiranoj osobi na sluznicama i koži. Polutanti mogu biti nosioci alergena i mogu interferirati na različitim nivoima u nastanku alergijske reakcije. U ovom prikazu razma raju se dosadašnja saznanja o mehanizmima djelovanja polutanata na alergene, na imunosni sustav izloženih osoba na osnovi epidemioloških populacijskih istraživanja, kliničkih studija ekspozcije u kontroliranim uvjetima i eksperimentalnih testnih sistema in vivo i in vitro.Allergotoxicology studies the infl uence of pollutants on the development of allergic reactions and diseases. At the beginning, the research was focused on outdoor air pollutants, while recently it turns to the indoor environment, mainly because people this is where people spend most of their time. Air pollutants may be solid, soluble, or gaseous particles in nature, and they can differ in size, structure, and sources. Pollutants can be of biological or nonbiological origin. Currently interesting air pollutants include particulate matter, ozone, nitrogen oxides, and bioaerosols. The mechanisms of pollutant activity depend on the particle size, solubility, site of deposition, and specifi c chemical properties. Recent studies have shown that different pollutants provoke different immunological and nonimmunological responses in exposed persons. Interaction between air pollutants and allergens can take place outside the exposed person i.e. with allergen itself, or inside the organism on mucous membranes and skin. Pollutants may be the carriers of allergens and may exacerbate allergic reactions and diseases. This review presents recent views about the mechanisms of pollutant activity on allergens and immune system response in exposed persons, based on epidemiological population studies, clinical studies of exposure under controlled conditions, and experimental tests in vitro and in vivo

    Prevalence and causes of vision loss in Latin America and the Caribbean in 2015: magnitude, temporal trends and projections

    Get PDF
    Objective To estimate the prevalence and causes of blindness and vision impairment for distance and near in Latin America and the Caribbean (LAC) in 2015 and to forecast trends to 2020. Methods A meta-analysis from a global systematic review of 283 cross-sectional, population-representative studies from published and unpublished sources from 1980 to 2014 in the Global Vision Database included 17 published and 6 unpublished studies from LAC. Results In 2015, across LAC, age-standardised prevalence was 0.38% in all ages and 1.56% in those over age 50 for blindness; 2.06% in all ages and 7.86% in those over age 50 for moderate and severe vision impairment (MSVI); 1.89% in all ages and 6.93% in those over age 50 for mild vision impairment and 39.59% in all ages and 45.27% in those over 50 for near vision impairment (NVI). In 2015, 117.86 million persons were vision impaired; of those 2.34 million blind, 12.46 million with MSVI, 11.34 million mildly impaired and 91.72 million had NVI. Cataract is the most common cause of blindness. Undercorrected refractive-error is the most common cause of vision impairment. Conclusions These prevalence estimates indicate that one in five persons across LAC had some degree of vision loss in 2015. We predict that from 2015 to 2020, the absolute numbers of persons with vision loss will increase by 12% to 132.33 million, while the all-age age-standardised prevalence will decrease for blindness by 15% and for other distance vision impairment by 8%. All countries need epidemiologic research to establish accurate national estimates and trends. Universal eye health services must be included in universal health coverage reforms to address disparities, fragmentation and segmentation of healthcar
    corecore