2,070 research outputs found

    Learning Strategic Sophistication

    Get PDF
    We experimentally investigate coordination games in which cognition plays an important role, i.e. where outcomes are affected by the agents level of understanding of the game and the beliefs they form about each others understanding.We ask whether and when repeated exposure permits agents to learn to improve cognition in a strategic setting.We find evidence for strategic sophistication being learned, generalized and promoted.Agents acquire strategic sophistication in simple settings.They may fail to do so in similar but more demanding settings.Given the opportunity, they transfer learning from the simple to the more demanding task.There is heterogeneity in sophistication.We find some evidence for sophisticated agents trying to spread sophistication early in the game, provided there is a long enough time horizon.noncooperative games;laboratory group behavior

    Cognition in Spatial Dispersion Games

    Get PDF
    In common-interest spatial-dispersion games the agents common goal is to choose distinct locations.We experimentally investigate the role of cognition in such games and compare it with the role of cognition in spatial matching games. In our setup cognition matters because agents may be differentially aware of the dispersion opportunities that are created by the history of the game.We ask whether cognitive constraints limit the agents ability to achieve dispersion and, if there is dispersion, whether these constraints affect the mode by which agents achieve dispersion.Our main finding is that strategic interaction magnifies the role of cognitive constraints.Specifically, with cognitive constraints, pairs of agents fail to solve a dispersion problem that poses little or no problem for individual agents playing against themselves.When we remove the cognitive constraints in our design, pairs of agents solve the same problem just as well as individuals do.In addition, we find that when playing against themselves agents do not change the mode by which they solve the dispersion problem when our design removes the cognitive constraints.noncooperative games;laboratory group behavior

    Cognition in Spatial Dispersion Games

    Get PDF
    In common-interest spatial-dispersion games the agents common goal is to choose distinct locations.We experimentally investigate the role of cognition in such games and compare it with the role of cognition in spatial matching games. In our setup cognition matters because agents may be differentially aware of the dispersion opportunities that are created by the history of the game.We ask whether cognitive constraints limit the agents ability to achieve dispersion and, if there is dispersion, whether these constraints affect the mode by which agents achieve dispersion.Our main finding is that strategic interaction magnifies the role of cognitive constraints.Specifically, with cognitive constraints, pairs of agents fail to solve a dispersion problem that poses little or no problem for individual agents playing against themselves.When we remove the cognitive constraints in our design, pairs of agents solve the same problem just as well as individuals do.In addition, we find that when playing against themselves agents do not change the mode by which they solve the dispersion problem when our design removes the cognitive constraints

    Learning Strategic Sophistication

    Get PDF
    We experimentally investigate coordination games in which cognition plays an important role, i.e. where outcomes are affected by the agents level of understanding of the game and the beliefs they form about each others understanding.We ask whether and when repeated exposure permits agents to learn to improve cognition in a strategic setting.We find evidence for strategic sophistication being learned, generalized and promoted.Agents acquire strategic sophistication in simple settings.They may fail to do so in similar but more demanding settings.Given the opportunity, they transfer learning from the simple to the more demanding task.There is heterogeneity in sophistication.We find some evidence for sophisticated agents trying to spread sophistication early in the game, provided there is a long enough time horizon

    Accumulation Pattern Of Total Nonstructural Carbohydrate In Strawberry Runner Plants And Its Influence On Plant Growth And Fruit Production

    Get PDF
    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. ‘Camarosa’, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high latitude (41°50' N) and high elevation (1292 m) nurseries in Siskiyou County, California. Plants were sampled beginning in late summer through early autumn and analyzed for dry mass (DM) and TNC. Plants from different digging dates were established in growth chambers (GC) at UC Davis or fruit evaluation plots in Irvine, California. In the nursery, TNC concentration in storage tissues increased steadily from the second week of September to the third week of October, and crown and root TNC concentration was positively correlated with the accumulation of chilling units (hours ≤7.2°C). The root TNC concentration consistently increased from 6 to 10% DM from mid-September to the first week of October. Transplant growth and fruiting pattern were affected by digging date. Overall, the roots were more sensitive to chilling in terms of TNC accumulation, than the crowns. Therefore, roots would be the appropriate organ for assessing TNC status and potential digging dates of strawberry nursery runner plants early in the fall.EEA FamailláFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Larson, Kirk D. University of California Davis. Department of Plant Sciences; Estados UnidosFil: Weinbaum, Steven A. University of California Davis. Department of Plant Sciences; Estados UnidosFil: DeJong, Theodore M. University of California Davis. Department of Plant Sciences; Estados Unido

    Accumulation pattern of total nonstructural carbohydrate in strawberry runner plants and its influence on plant growth and fruit production

    Get PDF
    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. eCamarosaf, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high latitude (41‹50' N) and high elevation (1292 m) nurseries in Siskiyou County, California. Plants were sampled beginning in late summer through early autumn and analyzed for dry mass (DM) and TNC. Plants from different digging dates were established in growth chambers (GC) at UC Davis or fruit evaluation plots in Irvine, California. In the nursery, TNC concentration in storage tissues increased steadily from the second week of September to the third week of October, and crown and root TNC concentration was positively correlated with the accumulation of chilling units (hours .7.2‹C). The root TNC concentration consistently increased from 6 to 10% DM from mid-September to the first week of October. Transplant growth and fruiting pattern were affected by digging date. Overall, the roots were more sensitive to chilling in terms of TNC accumulation, than the crowns. Therefore, roots would be the appropriate organ for assessing TNC status and potential digging dates of strawberry nursery runner plants early in the fall.Key words: Transplant, carbohydrate, chilling, growth analysis

    Differential Response Of Early And Intermediate Flowering Strawberry Cultivars To Nursery Late-Season Nitrogen Applications And Digging Date

    Get PDF
    The response of ‘Ventana’, an early flowering cultivar, and ‘Camarosa’, an intermediate flowering cultivar, to nursery late-season nitrogen (N) applications and digging date were studied in strawberry (Fragaria x ananassa Duch). Two experiments were conducted. In the first experiment, runner plants dug on September 20 and October 11 from a high-latitude nursery in California, were established in growth chambers set at 25°/15ºC day/night temperature, 12-h photoperiod, and grown for 90 days. Compared to the first experiment, in the second experiment plants received extra N (foliar-applied) in the nursery in late summer, and runner plants were not grown in GC but in open field (Irvine, California). In the second experiment, runner plants were dug on Sept 20 and Oct 2. In both experiments, plants dug in September were exposed to ~100 chilling units (CU: hours ≤7.2°C) and plants dug in October were exposed to ~300 CU. As a result, October-dug plants had greater crown and root dry weight, and greater concentration of starch and total nonstructural carbohydrates (TNC) in leaves, crowns and roots, compared to September-dug plants. In control plants, from September to October, root TNC concentration increased in ‘Camarosa’ from ~6% to ~11%, and in ‘Ventana’ from ~14% to ~21%, and leaf N concentration ranged from 1.47 to 1.81% in ‘Camarosa’, and from 1.60 to 1.96% in ‘Ventana’. Late summer N applications increased plant N concentration and early-season yields. Late-summer nursery N applications reduced dead leaf biomass (DLB) and dead leaf area (DLA) in both cultivars, although ‘Ventana’ had lower DLB and DLA than ‘Camarosa’. ‘Ventana’ had a greater leaf number and flowered earlier, and had greater early fruit production than ‘Camarosa’. The genetic earliness of ‘Ventana’ would be correlated with the potential of the plant for accumulation of higher initial levels of leaf N and root TNC, and for having greater leaf longevity, compared to ‘Camarosa’.EEA FamailláFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Larson, Kirk D. University of California Davis. Department of Plant Sciences; Estados UnidosFil: Weinbaum, Steven A. University of California Davis. Department of Plant Sciences; Estados UnidosFil: DeJong, Theodore M. University of California Davis. Department of Plant Sciences; Estados Unido
    corecore