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Abstract 
 

In common-interest spatial-dispersion games the agents’ common goal is to choose 
distinct locations. We experimentally investigate the role of cognition in such games 
and compare it with the role of cognition in spatial matching games. In our setup 
cognition matters because agents may be differentially aware of the dispersion 
opportunities that are created by the history of the game. We ask whether cognitive 
constraints limit the agents’ ability to achieve dispersion and, if there is dispersion, 
whether these constraints affect the mode by which agents achieve dispersion. Our 
main finding is that strategic interaction magnifies the role of cognitive constraints. 
Specifically, with cognitive constraints, pairs of agents fail to solve a dispersion 
problem that poses little or no problem for individual agents playing against themselves. 
When we remove the cognitive constraints in our design, pairs of agents solve the same 
problem just as well as individuals do. In addition, we find that when playing against 
themselves agents do not change the mode by which they solve the dispersion problem 
when our design removes the cognitive constraints. 
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Abstract

In common-interest spatial-dispersion games the agents’ common goal is to choose
distinct locations. We experimentally investigate the role of cognition in such games
and compare it with the role of cognition in spatial matching games. In our setup
cognition matters because agents may be differentially aware of the dispersion
opportunities that are created by the history of the game. We ask whether cognitive
constraints limit the agents’ ability to achieve dispersion and, if there is dispersion,
whether these constraints affect the mode by which agents achieve dispersion. Our
main finding is that strategic interaction magnifies the role of cognitive constraints.
Specifically, with cognitive constraints, pairs of agents fail to solve a dispersion
problem that poses little or no problem for individual agents playing against them-
selves. When we remove the cognitive constraints in our design, pairs of agents
solve the same problem just as well as individuals do. In addition, we find that when
playing against themselves agents do not change the mode by which they solve the
dispersion problem when our design removes the cognitive constraints.

INTRODUCTION

In spatial dispersion games the agents’ common goal is to choose distinct locations.
Such games have been used to study congestion problems, habitat selection, and
networking issues, e.g., Alpern and Reyniers [2002] and Alpern and Gal [2003].
More generally, dispersion incentives in location games appear in models of product
differentiation, e.g., Salop [1979], and variants of the voting models of Hotelling
[1929] and Downs [1957], e.g., Palfrey [1984].1
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COGNITION IN SPATIAL DISPERSION GAMES 211

We experimentally investigate the role of cognition in such games and compare
it with the role of cognition in spatial matching games, where the common goal of
the agents is to choose the same location. In our setup cognition matters because
agents may be differentially aware of the dispersion opportunities that are created by
the history of the game. Once agents achieve dispersion in a repeated spatial disper-
sion game and if they can remember past choices, they have the option to maintain
dispersion by simply maintaining their previous choices. When agents do not have
a simple record of their own past choices there may be other ways of sustaining
dispersion. Cognitive issues arise when agents do not have a simple record of their
own past choices, but there is a procedure for inferring own past choices. Some
agents may be aware of this procedure while other agents may be unaware of it.

Unawareness of this sort requires more than simple lack of knowledge. In
addition to not knowing the procedure the agent must not know that he does not
know the procedure, i.e., he must lack negative introspection. Unawareness seems
commonplace in everyday life, and yet has only recently attracted attention in the
literature. One likely reason is that unawareness does not easily fit into conven-
tional models of information economics. Violations of negative introspection are not
compatible with the standard partitional state space model of knowledge, Aumann
[1976], as pointed out by Geanakoplos [1992]. More recently, Dekel, Lipman and
Rustichini [1998] have demonstrated that any standard state space model precludes
unawareness. They suggest that one way to avoid this conundrum is to make a
distinction between the agent’s and the analyst’s description of the state space, and
to treat the state space as “representing the agent’s view of possibilities.” Recently,
there have been a few proposals of models of knowledge that permit unawareness,
e.g., Li [2003] and Schipper [2002]. Furthermore, there have been suggestions that
properly incorporating unawareness into our models may shed light on issues related
to contractual incompleteness and no-trade theorems.

Our objective is more modest. We accept unawareness as a simple empirical
phenomenon and ask what happens when agents differ in their awareness in a simple
strategic setting, i.e., when there is interactive unawareness. Common-interest games
are attractive for this purpose because they help us focus on the central issue of how
unawareness affects players’ strategic reasoning about others. We need not worry
for example about how differential awareness interacts with signaling motives,
bargaining motives, deception, threats, punishments, or other-regarding preferences.
Location games with a spatial structure are appealing because agents may differ in
how much of this structure and its possible uses they perceive.

For a formal model of interactive unawareness in our games we follow Bacharach
[1993]. He calls for a model of games in which “one specifies the way players
conceive the situation and how this varies.” He provides details of such a model of
variable universe games for the case where the players’ aim is to choose a common
action, i.e., for matching games. In Bacharach’s model, a player’s perception is
essentially given by a partition of the set of actions. Blume and Gneezy [2002]
extend Bacharach’s approach to permit a more general structure on the sets of
actions than partitions, or collections of partitions. It permits the spatial (circular)
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structure that is used in Blume and Gneezy [2002], Blume, DeJong and Maier
[2003] and that will be used in the present paper to address spatial dispersion games.2

A basic version of the dispersion game (that we expand upon and fully develop
later in the paper) consists of two players who are randomly paired together for a
one-shot game. The two players simultaneously and independently choose one of
three identical unlabeled sectors of a disc, as illustrated in Figure 1. One player sees
a disc whose labels have the directional order indicated in Figure 1a. The other
player sees a disc with the directional order of the labels reversed, as in Figure 1b.
The locations are randomized at the beginning of the one-shot game and neither
player sees the labels A, B, and C themselves. In a spatial dispersion game, the
payoffs are one if both players choose different sectors, A and B, B and C, or C and
A, and zero if they choose the same sector, A, B, or C. For a simple spatial matching
game the payoffs are just the reverse.

Blume and Gneezy [2002] have experimentally demonstrated that there are
differences in awareness in spatial matching games. Blume and Gneezy consider
one-shot spatial matching games in which players simultaneously choose a single
sector from a disc with five sectors. All sectors are identical in size and shape, three
are white, and two are black. They compare two scenarios, one in which a single indi-
vidual plays against him- or herself, and one in which two distinct players play against
each other. In either case, given the symmetry constraints imposed by the task, there
is a unique optimal way to play the game. Success is only guaranteed if both choices
correspond to the midpoint of the odd distance between the two black sectors.
Cognitive differences can be shown to exist by having players play against themselves.
When playing against themselves, players who are aware of the guaranteed success
strategy will use it, while others will be attracted to the obvious alternative, to choose
one of the black sectors. Blume and Gneezy find that a significant percentage of
participants do not solve the game when playing against themselves.

In the matching games of Blume and Gneezy [2002], cognitive differences prev-
ent players from coordinating on the unique optimal solution. Cognitive differences
are likely to play a different role in dispersion games. Even though in both kinds

C
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Player 1

Figure 1a.

Player 2

Figure 1b.

HKC12 8/6/04, 16:30212



COGNITION IN SPATIAL DISPERSION GAMES 213

of games agents have a common objective, the structure of equilibria is different.
Unlike in matching games, in dispersion games typically none of the equilibria are
strict: As long as there are more locations than agents, an agent can always switch to
an unused location and still maintain dispersion. Also, while the matching games of
Blume and Gneezy [2002] have a unique optimal solution, there are multiple ways
in which dispersion can be achieved in our games. This makes the questions of
whether any equilibrium is attained and, if so, which one will be selected important.

The present paper has agents interact repeatedly in spatial dispersion games.
Repeated interaction in spatial matching games with a circular structure has been
investigated by Blume, DeJong and Maier [2003]. There, players are randomly
paired each period. The stage game played in each period consists of two rounds. In
the first round of the stage game two players simultaneously and independently
choose one of n identical sectors of a disc, where n is odd.3 In the second round,
after observing first round choices, but without being able to distinguish one’s own
from one’s partner’s choice, both players choose again. In both rounds, payoffs are
one if both players choose identical sectors and zero otherwise. Note that the second
round induces essentially the same choice problem as the task in Blume and Gneezy
[2002] and therefore has a unique optimal solution.

In the repeated spatial matching games of Blume, DeJong and Maier, learning
can occur at two levels. At one level, in each period, agents can learn by labeling
actions in the first round and using these labels in the second round.4 At the other
level, agents can learn across periods about how to learn within a period. This type
of learning, which we call cognitive learning, has to the best of our knowledge of
the literature only been addressed in the Blume, DeJong and Maier [2003] paper.
Initially, there may be agents who are unaware of the fact that the labels introduced
by first-round choices can always be used to identify a unique distinct sector. Other
agents may be aware of this possibility. In the course of the multi-period interaction,
agents may become aware of this possibility, i.e., engage in aha learning, Bühler
[1907, 1908], Köhler [1925] and Weber [2003].5 The results from our matching
games support coordination outcomes and we find evidence for cognitive learning.
That is, in simple environments agents learn across periods to make better use within
a period of labels created in that period. We observe transfer of cognitive learning
from simple environments to more complicated environments.

As previously noted, the structures of the action space that agents may or may
not be aware of have different uses in dispersion games than matching games. For
example, the circular structure of the matching game of Blume, DeJong and Maier
[2003] enables agents to identify a unique candidate for a common action. The same
circular structure in a dispersion game generates a “coordination problem” char-
acterized by multiple, non-strict equilibria. This difference in the possible use of
structures suggests that the learning may also be different.

Our main finding in the present paper is that in spatial dispersion games, strategic
interaction magnifies the role of cognitive constraints. Specifically, with cognitive
constraints, pairs of agents fail to solve a dispersion problem that poses little or
no problem for individual agents playing against themselves. When we remove the

HKC12 8/6/04, 16:30213



214 Vol. XX

cognitive constraints in our design, pairs of agents solve the same problem just as
well as individuals do. In addition, we find that when playing against themselves
agents do not change the mode by which they solve the dispersion problem when
our design removes the cognitive constraints.

GAME AND EXPERIMENTAL DESIGN

We study a repeated dispersion game in which two players are randomly paired
together and stay paired for twenty-one periods. In the first period, the two players
simultaneously and independently choose one of three identical unlabeled sectors of
a disc, as illustrated in Figure 1.6 One player sees a disc whose labels have the direc-
tional order indicated in Figure 1a. The other player sees a disc with the directional
order of the labels reversed, as in Figure 1b. Neither player sees the labels A, B, and
C themselves. The payoffs are one if both players choose different sectors, A and B,
B and C, or C and A, and zero if they choose the same sector, A, B, or C. At the end
of period one, the two players are informed about the sectors that were chosen.

At the beginning of the second period, players observe the previous period’s
choices but without being able to distinguish one’s own from one’s partner’s choice,
for example see Figure 2 where the players achieved a dispersion outcome and
where the discs with the first period choices have been randomly spun and presented
to the players, Figure 2a and 2b respectively, at the beginning of period two. Both
players then choose again. The payoffs are again one if both players choose different
sectors and zero if they choose the same sector. At the end of period two, the two
players are informed about the sectors that were chosen. Specifically they see the
choices made in period 2, marked by red dots, on the background of the choices
made in the previous period, marked by shaded sectors. Each of the subsequent
periods follows the same sequence outlined for the second period.

We implement a two-by-two design. The first dimension is the information pro-
vided to players about their choices. The relative-location information condition is
described above. In the theory for dispersion games, it is common practice to assume

Player 1

Figure 2a.

Player 2

Figure 2b.
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that agents know their present location and the location of other agents when taking
their future choice of action. This describes the precise-location information condi-
tion and is illustrated in Figure 3a and 3b, where the choice of one player is noted in
dark shading and the other player’s choice is lightly shaded.

The second dimension of the design is the pairing of the players. The first
condition is fixed pairing, as describe above. The second condition is self pairing
where a player is paired with him or herself for the duration of the repeated spatial
dispersion game. The purpose of this dimension is to separate the cognition prob-
lem from the coordination problem. Thus, there are four treatments in our design;
fixed-pairing with relative and precise location information, and self-pairing with
relative and precise information.

The experiment was conducted using a series of six cohorts; two cohorts or
replications each for the two information treatments with fixed-pairing and one
replication each for the two information treatments with self-pairing. A cohort
consisted of twelve participants. Such a design provides the same number of pair
observations in each of the four treatments. All participants were recruited from
undergraduate (sophomore and above) and graduate classes at the University of
Iowa. None of the participants had previously taken part in or otherwise gained
experience with this series of treatments. Upon arrival, participants were seated at
separate computer terminals and given a copy of the instructions.7 Before each
replication, instructions were read aloud and participants individually filled out
questionnaires confirming their knowledge and understanding of the instructions.
We then went over the questionnaire orally and answered questions. Since these
instructions were read aloud, we assume that the information contained in them was
mutual knowledge.

Each cohort played a repeated spatial dispersion game for twenty-one periods
from one of the four treatments in the design. Each period had the following structure.
Prior to the beginning of the first period, participants were paired using a random-
matching procedure or paired with themselves. In the first period, participants chose
a sector from a symmetric disc with 3 identical sectors. At the beginning of the first

Player 1

Figure 3a.

Player 2

Figure 3b.
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period, the discs were randomly rotated, independently across participants or across
the two computer screens used by a participant in the self-pairing treatments, to
eliminate all possibilities for a priori coordination. Then, participants made their
choices by using a mouse to click on their chosen sector. They were given an
opportunity to either revise or confirm their choices. At the end of the period,
when all participants had made and confirmed their choices, they were informed
about which sectors were chosen in their match.

At the beginning of period two, each disc was randomly rotated and period-one
choices were displayed in the new configurations. In the display for the relative
information treatments no distinction was made between one’s own choice and one’s
partner’s choice, see Figure 2a and 2b. This procedure ensured that in the second
period, participants only had information about the configuration of choices. In the
precise information treatments, each player’s choice was indicated for both players
and for the self-pairing treatments the choices made on each computer screen were
indicated for the player, see Figure 3a and 3b. In the second period, participants once
more chose one of the three sectors from the same disc as before with the prior
choices displayed as just described. At the end of the period, when all participants
had made and confirmed their choices, they were informed about which sectors
were chosen in their pair along with the relative (precise) locations of the previous
period’s choices. Each subsequent period through period twenty-one followed the
same sequence detailed for period two.

Each replication lasted from one-half to one hour. Participants’ earnings ranged
from $7.50 to $15.75 plus a “show up” payment of $5.

THEORY

A solution for our relative information fixed-pairing treatment, must acknowledge
two fundamental characteristics of the game. These are the symmetries that are built
into the game, and potential differences in players’ abilities to recognize when these
symmetries have been broken.

Our design ensures that in the first period of our game all three sectors are
completely symmetric. Players could not guarantee dispersion even if we permitted
them to talk before the game. The fact that we rotate the disc independently across
players guarantees that players de facto randomize by assigning equal probabilities
to all sectors in the first period.

In the second period, players observe which sectors were chosen in the first
period. Consider the case where players achieved dispersion in the first period (the
other case, in which their choices resulted in congestion, is analyzed analogously).
The fact that we spin the disc and that both players’ choices are marked identically
ensures that players cannot distinguish between their own choice and their partner’s
choice. Therefore, players are de facto precluded from guaranteeing dispersion in the
second period by maintaining their first-period choices in the second period.

However, unlike in the first period, the absence of communication is a binding
constraint here. If they could communicate, they could agree on one player playing
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the odd sector, the sector not chosen by either player in the first period, and the other
player playing one of the first-period choices. In the absence of communication, the
fact that players’ positions are identical prevents them from coordinating on such
asymmetric behavior. Therefore we look for equilibria where in the second period
both players put the same probability on the odd sector.

Before the third period (and similarly for subsequent periods) smart players will
remember whether in the second period they chose the odd sector, the sector to the
left of the odd sector (as viewed from the center of the disc), or the sector to the right
of the odd sector. Then, if they manage to achieve dispersion in the third period,
they can achieve dispersion in every subsequent period by following the rule of
choosing the same sector in relation to the odd sector as in the previous period.

A problem arises because not all players need be smart, in the sense of realizing
the possibility of making left-right distinctions on the disc. Players who can only
distinguish chosen and unchosen sectors can only guarantee future dispersion if the
dispersion realized was such that one player in the previous period chose the odd,
unchosen, sector and the other chose one of the two previously chosen sectors. We
formalize this problem by allowing for different types of players, who are endowed
with different languages, a coarse-language and a fine-language, in which they
describe the choice set to themselves.

The distinction between coarse- and fine-language players is as follows. Coarse-
language players can only distinguish chosen and unchosen sectors in any period
after the first period. Fine-language players can use the circular structure to enumer-
ate all sectors after the first period. Further, fine-language players can commonly
distinguish all sectors in a period after the second period. The reason is that for period
three and after, fine-language players can describe each others’ choices relative to
the odd sector. Already, in period two, a fine-language player can for example
choose “the sector to the left of the odd sector.” At the beginning of period three, a
fine-language player can also see his partner’s period-two choice in reference to the
odd sector of period one. As a result, fine-language players can maintain dispersion
in period three and all subsequent periods.8

Player symmetry requires that players use identical strategies. Accordingly, we
will focus on equilibria in which players use identical strategies and in which they
employ efficient symmetric continuation strategies.

Denote by VD a player’s continuation payoff after players have achieved sus-
tainable dispersion (dispersion in period three or later for fine-language players, and
chosen-unchosen dispersion for coarse-language players) and by VO the continua-
tion payoff otherwise. Denote by p and q the probabilities of each player choosing
the odd sector before there is sustainable dispersion, either the sector not chosen
if players chose different sectors or the sector chosen if players chose the same
sector. Note that the probabilities assigned to the two remaining sectors have to
equal (1 − p)/2 each for one player and (1 − q)/2 each for the other. Of course in a
symmetric equilibrium p and q must be the same. Consider the two cases were all
players are fine-language players, λ = 1, or all players are coarse-language players,
λ = 0. Then the payoff from using probability q against probability p equals:
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π(q, p) = pq[0 + VO] + (p(1 − q) + q(1 − p))[1 + VD]

+ (1 − p)(1 − q)
1

2
1 1

1

2
0[    (   ) ]  [   ] .+ + − + +





λ λV V VD O O 

In equilibrium, the player choosing q must be indifferent among all q. Hence the
derivative with respect to q must be zero.

∂π
∂
( , )q p

q
 = pVO + (1 − 2p)[1 + VD] − (1 − p)
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Solving for p, we obtain

p
V V V V

V V V V
D O D O

D O D O

  
      [   ]

      [   ]
.=

+ − − −
+ − − −

2 1 2

4 3 4

λ
λ

Hence, if all players are fine-language players, λ = 1, then

pf = .
1

3

Fine-language players uniformly randomize across all three sectors through period
two and continue to randomize in period three and subsequent periods until disper-
sion is achieved. Once dispersion is achieved, players coordinate by both choosing
left or right of the odd sector or by selecting chosen and unchosen.

If all players are coarse-language players, λ = 0, then

p
V V

V V
c

D O

D O

  
[   ]  

[   ]  
.=

− +
− +

2 1

4 3

Note that pc is increasing in VD − VO. We conclude that coarse-language players put
more probability on the odd sector than fine-language players. After period one,
coarse-language players randomize until they achieve the dispersion outcome of
chosen and unchosen sectors. Observe that cognitive differences only matter in the
repeated game with at least three periods.

More generally, we can consider the incomplete information game where a player
is a fine-language player with probability µ and a coarse-language player with prob-
ability 1 − µ .9 Coarse-language players being unaware of their cognitive constraint
attach no probability to other players being fine-language players. They play under
the presumption that the other player is a coarse-language player with certainty.
Therefore, in the incomplete information game, regardless of µ , coarse-language
players use the strategy derived for the complete information game above in which
all players are coarse-language players.
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In contrast, fine-language players are aware of the fact that both types are present
and accordingly have beliefs about the type of the player they are facing. Thus, in
general, optimal behavior of fine-language players could depend on their beliefs and
potentially require complicated updating of beliefs. Fortunately, in the present con-
text, the previously noted strategy for fine-language players, derived above under the
assumption that it is common knowledge that all players are fine-language players,
remains optimal for any belief β by fine-language players that their partner is a
fine-language player. To see this, simply note that this strategy is optimal against
both fine-language players and coarse-language players. The optimality against fine-
language players is immediate.

The optimality against coarse-language players follows from the following facts:
(1) against a coarse-language player one can not do better than a coarse-language
player; (2) in periods in which a coarse-language player randomizes, any form of
randomization, including playing the odd sector with probability pf or repeating an
action that led to dispersion the last period is optimal; and (3), trying to maintain
dispersion by repeating last period’s action is optimal in periods where a coarse-
language partner is doing the same.

In the precise information fixed-pairing treatment, all players are fine-language
players unless they ignore the information given to them. They can all distinguish
among the sector they chose, the sector chosen by the player they are paired with, and
the odd sector. All players uniformly randomize until a dispersion outcome is achieved.
Once achieved, the dispersion outcome is played for the remainder of the game, both
play left or right of the odd sector. As long as there are coarse-language players here,
the probability of picking the odd sector is greater than or equal to one-third and the
dispersion outcome can also be achieved by the chosen and unchosen selection.

In the self-pairing treatments, relative and precise information, all players
uniformly randomize in period one. In period two, all players should achieve a
dispersion outcome because there is no coordination problem after the first period.
Fine-language players have the option of choosing to the left or right of the odd
sector; coarse-language players can only coordinate by focusing on chosen and
unchosen sectors.

RESULTS

Dispersion Outcomes

We first present the proportion of dispersion outcomes achieved by period for the
four treatments, fixed-pairing with precise and relative information and self-pairing
with precise and relative information, Figure 4. First, note that the self-pairing
precise information treatment reaches full coordination first. Second, the proportion
of dispersion outcomes for the fixed-pairing precise information and self-pairing
precise and relative information treatments are indistinguishable. In these three treat-
ments, all players are either fine-language players (fixed-pairing) or should not have
a coordination problem when selecting a dispersion outcome (self-pairing). Third,
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Figure 4.
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while the self-pairing precise and relative information treatments do not reach coor-
dination in period two, as predicted, the treatments are well on their way by period
three. Finally, the proportion of dispersion outcomes in the fixed-pairing relative
information treatment is indistinguishable from the expectation that behavior is ran-
dom, .67. This result contrasts sharply with the result in Blume and Gneezy [2002],
where relative information increased coordination relative to precise information.

Individual Player Choices

Regarding individual player choices, our theory suggests that for fixed-pairing, prior
to achieving a dispersion outcome, the probability of selecting the Odd sector is
higher in the relative information treatment (p > 1/3) than in the precise information
treatment (p = 1/3). Unfortunately, there are very few observations here, sixteen in
period two to be exact, too few for any meaningful analysis across the two treatments.10

However, aggregating across the two treatments, p > 1/3, which is the prediction
from theory in the presence of coarse-language players in both treatments.

Paired Player Choices

Paired choices of players are presented in Table 1 for the four treatments and as a
basis for comparison, the expectation that behavior is random. The relationship
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Table 1. Paired Player Choices

The relationship between paired choices in period t and outcomes in period t − 1 is
presented by treatment for periods two to twenty-one. Paired choices in period t are broken
down by whether the paired choices are Odd/Not Odd or Both Not Odd with the Dispersed
outcome in period t, or whether the paired choices are Other combinations that all imply
the Matched outcome in period t. Outcomes are broken down by Dispersed and Matched in
period t − 1. For comparison purposes, outcomes are also presented under the expectation
that behavior is random.

Treatment Choices Paired Choices
Period t:

Dispersed Matched Total

Odd/ Both Other
Not Odd Not Odd

Outcome
Period t − 1:

Fixed-Pair

Precise

Dispersed 39 150 13 202

Matched 15 6 17 38

54 156 30 240

Relative

Dispersed 69 44 52 165

Matched 44 9 22 75

113 53 74 240

Random 107 53 80 240

Self-Pair

Dispersed 323 71 36 430

Matched 27 11 12 50

350 82 48 480

Random 214 106 160 480

HKC12 8/6/04, 16:30221



222 Vol. XX

between paired choices in period t and outcomes in period t − 1 is presented for
periods two to twenty-one. Table 1 also presents the outcomes, Dispersed and
Matched, for the paired choices for period t. Paired choices in period t are broken
down by whether the choices are Odd/Not Odd or Both Not Odd with the Dispersed
outcome in period t, or whether the paired choices are Other combinations that all
imply the Matched outcome in period t. Outcomes in period t − 1 are broken down
by Dispersed and Matched.

In the fixed-pairing precise information treatment, all players should be fine-
language players and therefore should have access to playing left or right of the odd
sector. How successful were the players in achieving a dispersed outcome and in
coordinating their Not Odd choices, both choose Left or both Right, to achieve a
dispersed outcome? From Table 1, out of a possible 240 outcomes, 210 are dis-
persed. For the 210 dispersed outcomes, 156 choices in period t were Both Not Odd
(which implies both chose Left or both Right) and 54 were Odd/Not Odd (which
from our theory implies chosen and unchosen).

Figure 4 suggests a difficult coordination problem in the fixed pair relative infor-
mation treatment. Table 1 documents this problem. For the 165 dispersed outcomes
achieved in period t − 1, players failed to capitalize on this success 52 times in
period t. Further, for the successes achieved in period t, sometimes players coordin-
ated on Odd/Not Odd, 69, and sometimes Both Not Odd, 44. A similar conclusion
holds for the analysis of the 75 matched outcomes in period t − 1. Given either a
dispersed or matched outcome in period t − 1, players face the coordination task in
period t of choosing over Odd/Not Odd or Not Odd (with Not Odd presenting a
secondary coordination problem of how to coordinate over the two sectors). Player
choices are consistent with the expectation that behavior is random.

In the self-pairing treatments, players do not face such a coordination problem. A
player can decide him or herself between Odd/Not Odd and Not Odd (both Right or
both Left), regardless of the prior period’s outcome. Players were very successful at
achieving a dispersion outcome, but it is difficult to distinguish between coarse and
fine-language players. The results implied by Figure 4 and shown in Table 1 (the two
information treatments are combined in Table 1 because of their similar play) docu-
ment that the number of matched outcomes is lowest in the self-pairing treatments
despite the large number of Odd choices by players. Some players coordinated in
period t by choosing Right or Left of the Odd sector on both screens, 82 out of 480.
However, most players coordinated by Odd/Not Odd, 350 out of 480. This choice,
Odd/Not Odd (or from theory, chosen and unchosen) appears to be the “least costly”
way to coordinate rather than a statement about coarse and fine-language players.

Frequency of Paired Choices by Period

We next consider how many times player pairs chose a particular set of choices in
each period. Figure 5 presents the results for the fixed-pairing precise information
treatment. The graph documents the frequency of the paired choices made, Both Not
Odd, Odd/Not Odd and Other. To read this graph, note that for Both Not Odd, eight
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such paired choices were made in period two and thirteen such choices were made in
period twenty-one with the frequencies of Both Not Odd choices similarly graphed
for the periods in between. The graph documents not only the high frequency of the
Both Not Odd choice and its sustainability but also the demise of the Other category
of paired choices.

Figure 6 describes the frequency of paired choices in the fixed-pairing relative
information treatment. Again, the figure documents the coordination problem in this
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Figure 6. Frequency of Paired Choices.
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treatment. All three paired choices, Both Not Odd, Odd/Not Odd and Other, were
chosen throughout the treatment.

The self-pairing treatments of precise and relative information are presented in
Figure 7; the two information treatments are again combined because of their similar
play. The graph documents the high frequency and sustainability of the paired choice
of Odd/Not Odd (from theory, chosen and unchosen). The Both Not Odd choice
occurs with less frequency but is sustained throughout the treatments. The Other
category of choices tends to die off over the treatments.

SUMMARY

Spatial dispersion games are characterized by multiple, non-strict equilibria. It is
an open question whether players can select and attain an equilibrium in a spatial
dispersion game. If equilibrium can be achieved, how long will it take and what are
its characteristics. A natural question to also ask is whether the insights from match-
ing games extend to dispersion games?

Our principal finding is that in spatial dispersion games, strategic interaction
magnifies the role of cognitive constraints when compared to matching games.
Players in the fixed-pairing relative information treatment had a difficult time co-
ordinating their actions in order to achieve a dispersion outcome. This result con-
trasts with the result in Blume and Gneezy [2002], where in matching games relative
information increased coordination compared to precise information, and Blume,
DeJong and Maier [2003], where three sector matching games with relative informa-
tion achieved a high level of coordination.
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With these cognitive constraints in the fixed-pairing relative information treat-
ment, pairs of agents failed to solve the dispersion problem that posed little or no
problem for individual agents. In the self-pairing treatments, players were very
successful in achieving dispersion outcomes. While some players coordinated by
choosing right or left of the odd sector on both screens, most players coordinated by
selecting the “least costly” way to coordinate, selecting the odd and not odd sectors.
Thus, in both information treatments with self-pairing, we find that the mode used
by individual agents to solve the dispersion problem is the same, odd and not odd.

When we remove the cognitive constraints in our design, pairs of agents solve
the same problem just as well as individuals do. The frequency of dispersion out-
comes in the fixed-pairing precise information treatment is comparable to both self-
pairing treatments. However, the dispersion outcomes were different. Consistent
with theory, players essentially coordinated by both players choosing left or right
of odd in the fixed-pairing precise information treatment. In the self-pairing treat-
ments, the majority of players picked the least costly way to coordinate, selecting
the odd and not odd sectors.

NOTES

1 The issue of coordination via dispersion is extensively studied; other examples include Rapoport,
Lo and Zwick [2002] and Zwick, Rapoport and Lo [2002] in which agents must disperse across
several “locations” where the probability of success is inversely related to the number of agents at a
location. Ochs [1999] is another example of spatial coordination in a market entry game.

2 As well as other structures that incorporate relative position, temporal order, size, brightness, modularity,
etc.

3 For the sectors to be identical, it is important that the orientation of the disc is not common to both
players. This can be achieved by spinning the disc before presenting it to each player pair. Further-
more, we wish to eliminate asymmetries arising from a directional structure on the disc (clockwise vs.
counter-clockwise). This can be achieved by having agents in a match choose from opposite sides of
the disc, which is presented to each player before each choice.

4 This type of optimal learning has been analyzed by Crawford and Haller [1990] and Blume [2000];
other applications of this idea can be found in Alpern and Reyniers [2002], Bhaskar [2000] and
Kramarz [1996].

5 First introduced into the literature by cognitive and language psychologist Karl Bühler [1907, 1908] as
Aha-Erlebnis; literally described by the situation in which one encounters a difficult foreign thought,
hesitates and then suddenly attains the insight. Köhler [1925] studied the aha-experience experiment-
ally with chimpanzees and Weber [2003] is an application applied to human psychology.

6 For the sectors to be identical, it is important that the orientation of the disc is not common to both
players. This is achieved by spinning the disc before presenting it to each player. Furthermore, we wish
to eliminate asymmetries arising from a directional structure on the disc (clockwise versus counter-
clockwise and up versus down). This can be achieved by having agents in a match choose from
opposite sides of the disc, or by randomizing over the side which is presented to each player before
each choice. The randomizing scheme is more powerful in preserving symmetries, but for our purposes
the opposite-side scheme suffices.

7 Instructions are available from the authors upon request.
8 To appreciate the difference between a coarse- and fine-language player, note that there can be two

unchosen sectors when players match by selecting the odd sector or there can be one unchosen sector
when players achieve a dispersion outcome by not selecting the odd sector.
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9 Others have studied differences in cognition in games; however, in the games considered players
interests are not necessarily perfectly aligned. Nagel [1995] studied players’ ability to reason through
iterative dominance in the guessing game; Stahl and Wilson [1995] and Costa-Gomes, Crawford
and Broseta [2001] studied players’ varying abilities in dominance solvable games and games with
unique equilibria.

10 Choices in period one are de facto random. Thus, period two is the first period in which to observe
player choices.
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