516 research outputs found

    Accumulation dynamics of transcripts and proteins of cold-responsive genes in fragaria vesca genotypes of differing cold tolerance

    Get PDF
    Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold–inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the ‘ALTA’ genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant ‘NCGR1363’ and ‘FDP817’ genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in ‘ALTA’ crowns.publishedVersio

    Acute Arterial Thromboembolism in Patients with COVID-19 in the New York City Area

    Get PDF
    © 2020 Elsevier Inc. Background: Coronavirus disease 2019 (COVID-19) predisposes to arterial and venous thromboembolic complications. We describe the clinical presentation, management, and outcomes of acute arterial ischemia and concomitant infection at the epicenter of cases in the United States. Methods: Patients with confirmed COVID-19 infection between March 1, 2020 and May 15, 2020 with an acute arterial thromboembolic event were reviewed. Data collected included demographics, anatomical location of the thromboembolism, treatments, and outcomes. Results: Over the 11-week period, the Northwell Health System cared for 12,630 hospitalized patients with COVID-19. A total of 49 patients with arterial thromboembolism and confirmed COVID-19 were identified. The median age was 67 years (58–75) and 37 (76%) were men. The most common preexisting conditions were hypertension (53%) and diabetes (35%). The median D-dimer level was 2,673 ng/mL (723–7,139). The distribution of thromboembolic events included upper 7 (14%) and lower 35 (71%) extremity ischemia, bowel ischemia 2 (4%), and cerebral ischemia 5 (10%). Six patients (12%) had thrombus in multiple locations. Concomitant deep vein thrombosis was found in 8 patients (16%). Twenty-two (45%) patients presented with signs of acute arterial ischemia and were subsequently diagnosed with COVID-19. The remaining 27 (55%) developed ischemia during hospitalization. Revascularization was performed in 13 (27%) patients, primary amputation in 5 (10%), administration of systemic tissue‐ plasminogen activator in 3 (6%), and 28 (57%) were treated with systemic anticoagulation only. The rate of limb loss was 18%. Twenty-one patients (46%) died in the hospital. Twenty-five (51%) were successfully discharged, and 3 patients are still in the hospital. Conclusions: While the mechanism of thromboembolic events in patients with COVID-19 remains unclear, the occurrence of such complication is associated with acute arterial ischemia which results in a high limb loss and mortality

    Comparison of ultrasonography with computed tomography in the diagnosis of incisional hernias

    Get PDF
    Background: The objective of this study is to determine the reliability and validity of ultrasonography (US) in diagnosing incisional hernias in comparison with computed tomography (CT). The CT scans were assessed by two radiologists in order to estimate the inter-observer variation and twice by one radiologist to estimate the intra-observer variation. Patients were evaluated after reconstruction for an abdominal aortic aneurysm or an aortoiliac occlusion. Methods: Patients with a midline incision after undergoing reconstruction of an abdominal aortic aneurysm or aortoiliac occlusion were examined by CT scanning and US. Two radiologists evaluated the CT scans independently. One radiologist examined the CT scans twice. Discrepancies between the CT observations were resolved in a common evaluation session between the two radiologists. Results: After a mean follow-up of 3.4 years, 40 patients were imaged after a reconstructed abdominal aortic aneurysm (80% of the patients) or aortoiliac occlusion. The prevalence of incisional hernias was 24/ 40 = 60.0% with CT scanning as the diagnostic modality and 17/40 = 42.5% with US. The measure of agreement between CT scanning and US expressed as a Kappa statistic was 0.66 (95% confidence interval [CI] 0.45-0.88). The sensitivity of US examination when using CT as a comparison was 70.8%, the specificity was 100%, the predictive value of a positive US was 100%, and the predictive value of a negative US was 69.6%. The likelihood ratio of a positive US was infinite and that of a negative US was 0.29. The inter- and intra-observer Kappa statistics were 0.74 (CI 0.54-0.95) and 0.80 (CI 0.62-0.99), respectively. Conclusions: US imaging has a moderate sensitivity and negative predictive value, and a very good specificity and positive predictive value. Consistency of diagnosis, as determined by calculating the inter- and intra-observer Kappa statistics, was good. The incidence of incisional hernias is high after aortic reconstructions

    Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure.</p> <p>Results and Discussion</p> <p>ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems</p> <p>Conclusion</p> <p>A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.</p

    Protease Activity Increases in Plasma, Peritoneal Fluid, and Vital Organs after Hemorrhagic Shock in Rats

    Get PDF
    Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable – possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock
    corecore