106 research outputs found

    The isolation of demolybdo xanthine oxidase from bovine milk

    Full text link

    Functional quantitative susceptibility mapping (fQSM)

    Get PDF
    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1 mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining “activated” voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique

    Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group

    Get PDF
    open48siThe method harmonization and multisite data analysis elements of this work were supported by the NIH BD2K (Big Data to Knowledge) program (grant U54 EB020403) and the Australian National Health and Medical Research Council (fellowship 1106533, grant 1184403).Objective: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583.openHarding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M.Harding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M
    corecore