42 research outputs found

    Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair

    Get PDF
    In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQ (ΔrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways

    Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia

    Get PDF
    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy

    Technologiniai parkai Lietuvos žemės ūkyje

    No full text
    Santr. anglBibliogr.: p. 68 (3 pavad.)Vytauto Didžiojo universitetasŽemės ūkio akademij

    Žemės ūkio inžinerijos vadybos studijų planų ir programų optimizavimas

    No full text
    santr. angl, lietBibliogr.: p. 14 (4 pavad.)Vytauto Didžiojo universitetasŽemės ūkio akademij

    Adaptive Gene Expression in Bacillus subtilis Strains Deleted for tetL

    No full text
    The growth properties of a new panel of Bacillus subtilis tetL deletion strains and of a derivative set of strains in which tetL is restored to the chromosome support earlier indications that deletion of tetL results in a range of phenotypes that are unrelated to tetracycline resistance. These phenotypes were not reversed by restoration of a tetL gene to its native locus and were hypothesized to result from secondary mutations that arise when multifunctional tetL is deleted. Such genetic changes would temper the alkali sensitivity and Na(+) sensitivity that accompany loss of the monovalent cation/proton activity of TetL. Microarray comparisons of the transcriptomes of wild-type B. subtilis, a tetL deletion strain, and its tetL-restored derivative showed that 37 up-regulated genes and 13 down-regulated genes in the deletion strain did not change back to wild-type expression patterns after tetL was returned to the chromosome. Up-regulation of the citM gene, which encodes a divalent metal ion-coupled citrate transporter, was shown to account for the Co(2+)-sensitive phenotype of tetL mutants. The changes in expression of citM and genes encoding other ion-coupled solute transporters appear to be adaptive to loss of TetL functions in alkali and Na(+) tolerance, because they reduce Na(+)-coupled solute uptake and enhance solute uptake that is coupled to H(+) entry
    corecore