234 research outputs found

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Endocrine Disruptors and Obesity: An Examination of Selected Persistent Organic Pollutants in the NHANES 1999–2002 Data

    Get PDF
    Recent evidence suggests that endocrine disrupting chemicals (EDCs) may cause perturbations in endogenous hormonal regulation that predispose to weight gain. Using data from NHANES (1999–2002), we investigated the association between body mass index (BMI), waist circumference (WC) and selected persistent organic pollutants (POPs) via multiple linear regressions. Consistent interaction was found between gender, ln oxychlordane and ln p,p’ DDT. Also, we found an association between WC and ln oxychlordane and ln hpcdd in subjects with detectable levels of POPs, whereas an association between WC and ln p,p’ DDT was observed in all subjects. Furthermore, ln Ocdd showed an increase with higher WC and BMI, whereas, ln trans-nonachlor decreased with higher BMI. Hence, BMI and WC are associated with POPs levels, making the chemicals plausible contributors to the obesity epidemic

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Spatiotemporal patterns of population in mainland China, 1990 to 2010

    Get PDF
    According to UN forecasts, global population will increase to over 8 billion by 2025, with much of this anticipated population growth expected in urban areas. In China, the scale of urbanization has, and continues to be, unprecedented in terms of magnitude and rate of change. Since the late 1970s, the percentage of Chinese living in urban areas increased from ~18% to over 50%. To quantify these patterns spatially we use time-invariant or temporally-explicit data, including census data for 1990, 2000, and 2010 in an ensemble prediction model. Resulting multi-temporal, gridded population datasets are unique in terms of granularity and extent, providing fine-scale (~100 m) patterns of population distribution for mainland China. For consistency purposes, the Tibet Autonomous Region, Taiwan, and the islands in the South China Sea were excluded. The statistical model and considerations for temporally comparable maps are described, along with the resulting datasets. Final, mainland China population maps for 1990, 2000, and 2010 are freely available as products from the WorldPop Project website and the WorldPop Dataverse Repository

    Stimulus-Dependent Adjustment of Reward Prediction Error in the Midbrain

    Get PDF
    Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward prediction error signal in the brain updates reward prediction through stimulus–reward experiences. It remains unknown, however, how sensory processing of reward-predicting stimuli contributes to the computation of reward prediction error. To elucidate this issue, we examined the relation between stimulus discriminability of the reward-predicting stimuli and the reward prediction error signal in the brain using functional magnetic resonance imaging (fMRI). Before main experiments, subjects learned an association between the orientation of a perceptually salient (high-contrast) Gabor patch and a juice reward. The subjects were then presented with lower-contrast Gabor patch stimuli to predict a reward. We calculated the correlation between fMRI signals and reward prediction error in two reinforcement learning models: a model including the modulation of reward prediction by stimulus discriminability and a model excluding this modulation. Results showed that fMRI signals in the midbrain are more highly correlated with reward prediction error in the model that includes stimulus discriminability than in the model that excludes stimulus discriminability. No regions showed higher correlation with the model that excludes stimulus discriminability. Moreover, results show that the difference in correlation between the two models was significant from the first session of the experiment, suggesting that the reward computation in the midbrain was modulated based on stimulus discriminability before learning a new contingency between perceptually ambiguous stimuli and a reward. These results suggest that the human reward system can incorporate the level of the stimulus discriminability flexibly into reward computations by modulating previously acquired reward values for a typical stimulus

    The Value of Success: Acquiring Gains, Avoiding Losses, and Simply Being Successful

    Get PDF
    A large network of spatially contiguous, yet anatomically distinct regions in medial frontal cortex is involved in reward processing. Although it is clear these regions play a role in critical aspects of reward-related learning and decision-making, the individual contributions of each component remains unclear. We explored dissociations in reward processing throughout several key regions in the reward system and aimed to clarify the nature of previously observed outcome-related activity in a portion of anterior medial orbitofrontal cortex (mOFC). Specifically, we tested whether activity in anterior mOFC was related to processing successful actions, such that this region would respond similarly to rewards with and without tangible benefits, or whether this region instead encoded only quantifiable outcome values (e.g., money). Participants performed a task where they encountered monetary gains and losses (and non-gains and non-losses) during fMRI scanning. Critically, in addition to the outcomes with monetary consequences, the task included trials that provided outcomes without tangible benefits (participants were simply told that they were correct or incorrect). We found that anterior mOFC responded to all successful outcomes regardless of whether they carried tangible benefits (monetary gains and non-losses) or not (controls). These results support the hypothesis that anterior mOFC processes rewards in terms of a common currency and is capable of providing reward-based signals for everything we value, whether it be primary or secondary rewards or simply a successful experience without objectively quantifiable benefits

    Striatal sensitivity to personal responsibility in a regret-based decision-making task

    Get PDF
    Regret and relief are complex emotional states associated with the counterfactual processing of nonobtained outcomes in a decision-making situation. In the "actor effect," a sense of agency and personal responsibility is thought to heighten these emotions. Using fMRI, we scanned volunteers (n = 22) as they played a task involving choices between two wheel-of-fortune gambles. We examined how neural responses to counterfactual outcomes were modulated by giving subjects the opportunity to change their minds, as a manipulation of personal responsibility. Satisfaction ratings to the outcomes were highly sensitive to the difference between the obtained and nonobtained outcome, and ratings following losses were lower on trials with the opportunity to change one's mind. Outcome-related activity in the striatum and orbitofrontal cortex was positively related to the satisfaction ratings. The striatal response was modulated by the agency manipulation: Following losses, the striatal signal was significantly lower when the subject had the opportunity to change his/her mind. These results support the involvement of frontostriatal mechanisms in counterfactual thinking and highlight the sensitivity of the striatum to the effects of personal responsibility.</p
    • …
    corecore