309 research outputs found
The importance of soft law in the conservation of marine biodiversity
This paper will discuss soft law, its concept, its existing legal instruments as well as the importance of its interdependence with hard law. This thesis will also study the role of soft law in the conservation of marine biodiversity, with a special focus on areas beyond national jurisdiction and on two human activities which are fishing and shipping.
The main research question of this thesis is, to which extent will soft law be a helpful instrument in the resolution of current challenges in the conservation of marine biodiversity
The Recoil Proton Polarization: a new discriminative DVCS observable
Generalized parton distributions describe the correlations between the
longitudinal momentum and the transverse position of quarks and gluons in a
nucleon. They can be constrained by measuring photon leptoproduction
observables, arising from the interference between Bethe-Heitler and Deeply
virtual Compton scattering processes. At leading-twist/leading-order, the
amplitude of the latter is parameterized by complex integrals of the GPDs {H,
E, \~H, \~E} . As data collected on an unpolarized or longitudinally polarized
target constrains H and \~H, E is poorly known as it requires data collected
with a transversely polarized target, which is very challenging to implement in
fixed target experiments. The only alternative considered so far has been DVCS
on a neutron with a deuterium target, while assuming isospin symmetry and
absence of final-state interactions. Today, we introduce the polarization of
the recoil proton as a new DVCS observable, highly sensitive to E, which
appears feasible for an experimental study at a high-luminosity facility such
as Jefferson Lab
Electroexcitation of the at low momentum transfer
We report on new p measurements at the
resonance at the low momentum transfer region. The mesonic
cloud dynamics is predicted to be dominant and rapidly changing in this
kinematic region offering a test bed for chiral effective field theory
calculations. The new data explore the low dependence of the resonant
quadrupole amplitudes while extending the measurements of the Coulomb
quadrupole amplitude to the lowest momentum transfer ever reached. The results
disagree with predictions of constituent quark models and are in reasonable
agreement with dynamical calculations that include pion cloud effects, chiral
effective field theory and lattice calculations. The reported measurements
suggest that improvement is required to the theoretical calculations and
provide valuable input that will allow their refinements
Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics
A good feature representation is a determinant factor to achieve high
performance for many machine learning algorithms in terms of classification.
This is especially true for techniques that do not build complex internal
representations of data (e.g. decision trees, in contrast to deep neural
networks). To transform the feature space, feature construction techniques
build new high-level features from the original ones. Among these techniques,
Genetic Programming is a good candidate to provide interpretable features
required for data analysis in high energy physics. Classically, original
features or higher-level features based on physics first principles are used as
inputs for training. However, physicists would benefit from an automatic and
interpretable feature construction for the classification of particle collision
events.
Our main contribution consists in combining different aspects of Genetic
Programming and applying them to feature construction for experimental physics.
In particular, to be applicable to physics, dimensional consistency is enforced
using grammars.
Results of experiments on three physics datasets show that the constructed
features can bring a significant gain to the classification accuracy. To the
best of our knowledge, it is the first time a method is proposed for
interpretable feature construction with units of measurement, and that experts
in high-energy physics validate the overall approach as well as the
interpretability of the built features.Comment: Accepted in this version to CEC 201
The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV
We present final results on the photon electroproduction
() cross section in the deeply virtual Compton
scattering (DVCS) regime and the valence quark region from Jefferson Lab
experiment E00-110. Results from an analysis of a subset of these data were
published before, but the analysis has been improved which is described here at
length, together with details on the experimental setup. Furthermore,
additional data have been analyzed resulting in photon electroproduction cross
sections at new kinematic settings, for a total of 588 experimental bins.
Results of the - and -dependences of both the helicity-dependent and
helicity-independent cross sections are discussed. The -dependence
illustrates the dominance of the twist-2 handbag amplitude in the kinematics of
the experiment, as previously noted. Thanks to the excellent accuracy of this
high luminosity experiment, it becomes clear that the unpolarized cross section
shows a significant deviation from the Bethe-Heitler process in our kinematics,
compatible with a large contribution from the leading twist-2 DVCS term to
the photon electroproduction cross section. The necessity to include
higher-twist corrections in order to fully reproduce the shape of the data is
also discussed. The DVCS cross sections in this paper represent the final set
of experimental results from E00-110, superseding the previous publication.Comment: 48 pages, 32 figure
Photoproduction of K+K− meson pairs on the proton
The exclusive reaction γp→pK+K− was studied in the photon energy range 3.0–3.8 GeV and momentum transfer range 0.6<−t<1.3 GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20 pb−1. The reaction was isolated by detecting the K+ and the proton in CLAS, and reconstructing the K− via the missing-mass technique. Moments of the dikaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the ϕ meson in the P wave, evidence for S−P interference was found. The differential production cross sections dσ/dt for individual waves in the mass range of the ϕ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the t-dependent cross section of the S-wave contribution to the elastic K+K− photoproduction has been measured
- …
