229 research outputs found
The importance of soft law in the conservation of marine biodiversity
This paper will discuss soft law, its concept, its existing legal instruments as well as the importance of its interdependence with hard law. This thesis will also study the role of soft law in the conservation of marine biodiversity, with a special focus on areas beyond national jurisdiction and on two human activities which are fishing and shipping.
The main research question of this thesis is, to which extent will soft law be a helpful instrument in the resolution of current challenges in the conservation of marine biodiversity
The Recoil Proton Polarization: a new discriminative DVCS observable
Generalized parton distributions describe the correlations between the
longitudinal momentum and the transverse position of quarks and gluons in a
nucleon. They can be constrained by measuring photon leptoproduction
observables, arising from the interference between Bethe-Heitler and Deeply
virtual Compton scattering processes. At leading-twist/leading-order, the
amplitude of the latter is parameterized by complex integrals of the GPDs {H,
E, \~H, \~E} . As data collected on an unpolarized or longitudinally polarized
target constrains H and \~H, E is poorly known as it requires data collected
with a transversely polarized target, which is very challenging to implement in
fixed target experiments. The only alternative considered so far has been DVCS
on a neutron with a deuterium target, while assuming isospin symmetry and
absence of final-state interactions. Today, we introduce the polarization of
the recoil proton as a new DVCS observable, highly sensitive to E, which
appears feasible for an experimental study at a high-luminosity facility such
as Jefferson Lab
Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics
A good feature representation is a determinant factor to achieve high
performance for many machine learning algorithms in terms of classification.
This is especially true for techniques that do not build complex internal
representations of data (e.g. decision trees, in contrast to deep neural
networks). To transform the feature space, feature construction techniques
build new high-level features from the original ones. Among these techniques,
Genetic Programming is a good candidate to provide interpretable features
required for data analysis in high energy physics. Classically, original
features or higher-level features based on physics first principles are used as
inputs for training. However, physicists would benefit from an automatic and
interpretable feature construction for the classification of particle collision
events.
Our main contribution consists in combining different aspects of Genetic
Programming and applying them to feature construction for experimental physics.
In particular, to be applicable to physics, dimensional consistency is enforced
using grammars.
Results of experiments on three physics datasets show that the constructed
features can bring a significant gain to the classification accuracy. To the
best of our knowledge, it is the first time a method is proposed for
interpretable feature construction with units of measurement, and that experts
in high-energy physics validate the overall approach as well as the
interpretability of the built features.Comment: Accepted in this version to CEC 201
E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV
We present final results on the photon electroproduction ((e) over right arrowp - \u3e ep gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q(2) and x(B) dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q(2) dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-
Rosenbluth Separation of the πᵒ Electroproduction Cross Section
We present deeply virtual πᵒ electroproduction cross-section measurements at xB = 0.36 and three different Q2 values ranging from 1.5 to 2 GeV2, obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σLT. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q2 regime
Accessing pion GPDs through the Sullivan process: is it feasible?
Describing hadronic structure is one of the most intriguing problems in physics. In this respect, generalized parton distributions (GPDs) constitute an outstanding tool, allowing to draw “three dimensional pictures” of hadron’s inside. Starting from contemporary models for pion’s GPDs fulfilling all constraints imposed by QCD, we compute Compton form factors of pions subjected to deeply virtual Compton scattering. We show CFF’s behaviour to be gluon-dominated at EIC’s kinematics. Finally we evaluate lepton-beam-spin asymmetries in the Sullivan process, demonstrating the existence of such and thus triggering optimism about the possibility of probing pion’s 3D structure at electron-ion colliders
E00-110 Experiment at Jefferson Lab Hall A: Deeply Virtual Compton Scattering Off the Proton at 6 GeV
We present final results on the photon electroproduction (→e p → epγ) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q2 and xB dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q2 dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS2 term to the photon electroproduction cross section. The necessity to include higher-twist corrections to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this paper represent the final set of experimental results from E00-110, superseding the previous publication
A Glimpse of Gluons Through Deeply Virtual Compton Scattering on the Proton
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction
- …