254 research outputs found

    Identifying Apparel Attributes: The Relationship between Risks, Perceived Copyright Infringement and Purchase Intention of Knockoff Fashion Apparel Products

    Get PDF
    The success of fast fashion retailers has some industry leaders calling for copyright protection for apparel and closely aligned fashion products (Cline, 2012). Establishing criteria to determine what constitutes apparel copyright infringement is extremely difficult, as few designs are completely original (Raustiala & Sprigman, 2006). Apparel attributes are pertinent to purchase intention of fashion apparel and could influence perceived copyright infringement of knockoff fashion apparel products. The primary purpose of this study was to identify prominent visual fashion apparel attributes that could determine perceived copyright infringement. A secondary purpose was to examine the relationships among fashion apparel attributes, perceived copyright infringement, perceived risk, and purchase intention of knockoff fashion apparel. Researchers have identified apparel attribute factors including: Quality (Wee, Tan, & Cheok, 1995), appearance (Abraham-Murali & Littrell, 1995; Zhang, Li, Gong, and Wu, 2002), aesthetics (Abraham-Murali & Littrell, 1995) and functionality (Zhang, et al., 2002)

    Beneficial effects of magnesium treatment on heart rate variability and cardiac ventricular function in diabetic rats

    Get PDF
    Background: Diabetes mellitus induces life-threatening cardiovascular complications such as cardiac autonomic neuropathy and ventricular dysfunction and is associated with hypomagnesemia. In this study, we investigated the short-term effects of magnesium (Mg2+) treatment on streptozotocin (STZ)-induced diabetic cardiac complications. Methods: Adult Wistar rats were treated once with STZ (50 mg/kg, intraperitoneally [ip]) or vehicle (citrate) and then daily for 7 days with MgSO4 (270 mg/kg, ip) or saline. On the eighth day, in vivo tail-pulse plethysmography was recorded for heart rate variability (HRV) analysis, and ex vivo Langendorff-based left ventricular (LV) pressure–volume parameters were measured using an intraventricular balloon. Measurements of plasma lipid and Mg2+ levels as well as blood glucose and cardiac tissue Mg2+ levels were also performed. Results: Treatment with Mg2+ prevented diabetes-induced alterations in the standard deviation of the averages of normal-to-normal (NN) intervals (SDANN), root mean square differences of successive NN intervals (RMSSD), heart rate, and low-frequency (LF) power–high-frequency (HF) power ratio. In addition, Mg2+ restored orthostatic stress-induced changes in SDANN, RMSSD, and LF–HF ratio in diabetic rats. In isolated hearts, Mg2+ reversed the diabetes-induced decrease in LV end-diastolic elastance and the right shift of end-diastolic equilibrium volume intercept, without altering LV-developed pressure or end-systolic elastance. However, Mg2+ did not prevent the elevation in blood glucose, total cholesterol, and triglycerides or the decrease in high-density lipoprotein cholesterol in diabetes. Plasma- or cardiac tissue Mg2+ was not different among the treatment groups. Conclusion: These results suggest that Mg2+ treatment may attenuate diabetes-induced reduction in HRV and improve LV diastolic distensibility, without preventing hyperglycemia and dyslipidemia. Thus, Mg2+ may have a modulatory role in the early stages of diabetic cardiovascular complications

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC

    A genome-wide view of Caenorhabditis elegans base-substitution mutation processes

    Get PDF
    Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes
    • …
    corecore