30 research outputs found

    Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    Get PDF
    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992–2010 period performed by five different global coupled ocean–atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land–atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.The authors thank Jeff Knight (Met Office Hadley Centre) for his constructive comments on earlier versions of this manuscript. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) SPECS project (Grant Agreement Number 308378) and H2020 Framework Programme IMPREX project (Grant Agreement Number 641811). Constantin Ardilouze was also supported by the BSC Centro de Excelencia Severo Ochoa Programme.Peer ReviewedPostprint (author's final draft

    SEAS5: the new ECMWF seasonal forecast system

    Get PDF
    In this paper we describe SEAS5, ECMWF's fifth generation seasonal forecast system, which became operational in November 2017. Compared to its predecessor, System 4, SEAS5 is a substantially changed forecast system. It includes upgraded versions of the atmosphere and ocean models at higher resolutions, and adds a prognostic sea-ice model. Here, we describe the configuration of SEAS5 and summarise the most noticeable results from a set of diagnostics including biases, variability, teleconnections and forecast skill. An important improvement in SEAS5 is the reduction of the equatorial Pacific cold tongue bias, which is accompanied by a more realistic El Niño amplitude and an improvement in El Niño prediction skill over the central-west Pacific. Improvements in 2&thinsp;m temperature skill are also clear over the tropical Pacific. Sea-surface temperature (SST) biases in the northern extratropics change due to increased ocean resolution, especially in regions associated with western boundary currents. The increased ocean resolution exposes a new problem in the northwest Atlantic, where SEAS5 fails to capture decadal variability of the North Atlantic subpolar gyre, resulting in a degradation of DJF 2&thinsp;m temperature prediction skill in this region. The prognostic sea-ice model improves seasonal predictions of sea-ice cover, although some regions and seasons suffer from biases introduced by employing a fully dynamical model rather than the simple, empirical scheme used in System 4. There are also improvements in 2&thinsp;m temperature skill in the vicinity of the Arctic sea-ice edge. Cold temperature biases in the troposphere improve, but increase at the tropopause. Biases in the extratropical jets are larger than in System 4: extratropical jets are too strong, and displaced northwards in JJA. In summary, development and added complexity since System 4 has ensured that SEAS5 is a state-of-the-art seasonal forecast system which continues to display a particular strength in the El Niño Southern Oscillation (ENSO) prediction.</p

    How confident are predictability estimates of the winter North Atlantic Oscillation?

    No full text
    Atmospheric seasonal predictability in winter over the Euro-Atlantic region is studied with an emphasis on the signal-to-noise paradox of the North Atlantic Oscillation. Seasonal hindcasts of the ECMWF model for the recent period 1981-2009 show, in agreement with other studies, that correlation skill over Greenland and parts of the Arctic is higher than the signal-to-noise ratio implies. This leads to the paradoxical situation where the real world appears more predictable than the models suggest, with the forecast ensembles being overly dispersive (or underconfident). However, it is demonstrated that these conclusions are not supported by the diagnosed relationship between ensemble mean RMSE and ensemble spread which indicates a slight underdispersion (overconfidence). Furthermore, long atmospheric seasonal hindcasts suggest that over the 110-year period from 1900 to 2009 the ensemble system is well calibrated (neither over- nor underdispersive). The observed skill changed drastically in the middle of the 20th Century and paradoxical regions during more recent hindcast periods were strongly underdispersive during mid-Century decades. Due to non-stationarities of the climate system in the form of decadal variability, relatively short hindcasts are not sufficiently representative for longer-term behaviour. In addition, small hindcast sample size can lead to skill estimates, in particular of correlation measures, that are not robust. It is shown that the relative uncertainty due to small hindcast sample size is often larger for correlation-based than for RMSE-based diagnostics. Correlation-based measures like the RPC are shown to be highly sensitive to the strength of the predictable signal, implying that disentangling of physical deficiencies in the models on the one hand, and the effects of sampling uncertainty on the other hand, is difficult. Given the current lack of a causal physical mechanism to unravel the puzzle, our hypotheses of non-stationarity and sampling uncertainty provide simple yet plausible explanations for the paradox

    The Dutch Claustrophobia Questionnaire: Psychometric properties and predictive validity

    No full text
    Fear of suffocation and fear of restriction are thought to underlie claustrophobia and can be assessed with the Claustrophobia Questionnaire (CLQ; Radomsky et al., 2001). A first study tested the psychometric properties of a Dutch version of the CLQ. Students (N=363) completed a Dutch translation of the CLQ and a set of other questionnaires assessing other specific fears, anxiety or depression. Results confirmed the two-factor structure and showed that the Dutch version of the CLQ has good psychometric properties. A second study tested the predictive validity of the Dutch CLQ. Participants (N=23) were exposed each to nine claustrophobic situations with elements of suffocation, restriction or both. The Dutch CLQ was found to be a significant predictor of fear and respiratory reactivity during claustrophobic exposure. It can be concluded that the Dutch version of the CLQ is a reliable and valid instrument to assess claustrophobic fear.status: publishe

    Observationally constrained estimates of carbonaceous aerosol radiative forcing

    No full text

    How confident are predictability estimates of the winter North Atlantic Oscillation?

    No full text
    Predictions of the winter NAO and its small signal-to-noise ratio have been a matter of much discussion recently. Here we look at the problem from the perspective of 110-year-long historical hindcasts over the period 1901-2010 performed with ECMWF’s coupled model. Seasonal forecast skill of the NAO can undergo pronounced multidecadal variations: while skill drops in the middle of the century, the performance of the reforecasts recovers in the early twentieth century, suggesting that the mid-century drop in skill is not due to a lack of good observational data. We hypothesize instead that these changes in model predictability are linked to intrinsic changes of the coupled climate system. The confidence of these predictions, and thus the signal-to-noise behaviour, also strongly depends on the specific hindcast period. Correlation-based measures like the Ratio of Predictable Components are shown to be highly sensitive to the strength of the predictable signal, implying that disentangling of physical deficiencies in the models on the one hand, and the effects of sampling uncertainty on the other hand, is difficult. These findings demonstrate that relatively short hindcasts are not sufficiently representative for longer-term behaviour and can lead to skill estimates that may not be robust in the future

    Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    No full text
    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992–2010 period performed by five different global coupled ocean–atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land–atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.The authors thank Jeff Knight (Met Office Hadley Centre) for his constructive comments on earlier versions of this manuscript. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) SPECS project (Grant Agreement Number 308378) and H2020 Framework Programme IMPREX project (Grant Agreement Number 641811). Constantin Ardilouze was also supported by the BSC Centro de Excelencia Severo Ochoa Programme.Peer Reviewe
    corecore