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Abstract: 17 

Land surface initial conditions have been recognized as a potential source of predictability in 18 

sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction 19 

over the mid-latitude continents. Yet, few studies have systematically explored such an influence 20 

over a sufficient hindcast period and in a multi-model framework to produce a robust 21 

quantitative assessment. Here, a dedicated set of twin experiments has been carried out with 22 

boreal summer retrospective forecasts over the 1992-2010 period performed by five different 23 

global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil 24 

moisture initialization is assessed in two regions with high potential previously identified as 25 

hotspots of land-atmosphere coupling, namely the North American Great Plains and South-26 

Eastern Europe. Over the latter region, temperature predictions show a significant improvement, 27 

especially over the Balkans. Forecast systems better simulate the warmest summers if they 28 

follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a 29 

positive feedback between high temperature and low soil moisture content prone to dominate 30 

over other processes during the warmest summers in this region. Over the Great Plains, 31 

however, improving the soil moisture initialization does not lead to any robust gain of forecast 32 

quality for near-surface temperature. It is suggested that models biases prevent the forecast 33 

systems from making the most of the improved initial conditions. 34 
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1 Introduction 46 

 47 

Human activities are affected by climate-dependent factors, such as energy demand, crop yield 48 

or disease risk management. This raises a growing demand for reliable and accurate sub-49 

seasonal to seasonal forecasts of temperature and precipitation (Challinor et al. 2005, García-50 

Morales et al. 2007, Thompson et al. 2006). Atmospheric predictability on these timescales is 51 

mainly driven by the coupling between the atmosphere and slowly-evolving components of the 52 

Earth system, such as the ocean, sea ice and land surfaces (Doblas-Reyes et al. 2013). Even if 53 

tropical oceans provide the major source of global interannual variability through sea surface 54 

temperature anomalies related to the El Niño Southern Oscillation (ENSO) phenomenon (Saha 55 

et al. 2006, Stockdale et al. 2011), both observational and numerical studies have highlighted 56 

the significant imprint of the continental surfaces on the climate system and their potential or 57 

effective contribution to mid-latitude sub-seasonal to seasonal predictability, particularly for near-58 

surface temperature (T2M) and precipitation. Among these components, snowpack (Dutra et al. 59 

2011) and soil moisture anomalies (Seneviratne et al. 2010; Seneviratne et al. 2013) have been 60 

the most investigated since they strongly affect the land surface energy budget and, hence, the 61 

energy fluxes between the surface and the atmospheric boundary layer (Hirschi et al. 2011). 62 

Land surface models (LSM), which have improved steadily in the past three decades, together 63 

with increasing computational resources have allowed for more thorough studies and a better 64 

understanding of the soil moisture and snow influence on the atmosphere at multiple spatio-65 

temporal scales (Douville, 2010). A realistic snowpack initialization has been shown to be useful 66 

both in boreal fall (e.g. Orsolini et al. 2013) and spring (e.g. Peings et al. 2011), when the 67 

interannual variability of the Northern Hemisphere snow cover is relatively strong and has a 68 

large impact on the surface energy budget given the available incoming solar radiation even at 69 

high latitudes. 70 

 71 

For summer predictions, the focus was mainly on soil moisture and its influence on near-surface 72 

temperature and precipitation mainly via evapotranspiration. It has been demonstrated that soil 73 

moisture content controls the evapotranspiration in regions with a semi-arid climate (“soil 74 

moisture-limited regime”). In wet regions, the evapotranspiration rate mainly depends on 75 

atmospheric control and not on soil water content (“energy-limited regime”). In the former, the 76 

evaporative fraction modulated by soil moisture affects both the local water cycle (Dirmeyer 77 

2006) and the surface energy balance, and hence temperature and precipitation (Dirmeyer et al. 78 

2014, Koster et al. 2004b, Seneviratne et al. 2010). Additionally, soil moisture memory has 79 

proven to last up to several months in some cases (Seneviratne et al. 2006, Orth and 80 

Seneviratne, 2012, Hagemann and Stacke, 2015). Due to these characteristics, extreme warm 81 

events can be triggered or at least amplified by dry soil initial conditions in terms of magnitude 82 

(Fischer et al. 2007, Hirschi et al. 2011, Whan et al. 2015) and persistence (Lyon and Dole, 83 

1995, Lorenz et al. 2010). 84 

 85 

Previous studies have highlighted a number of “hotspots” where seasonal prediction skill can be 86 

increased by realistic soil moisture initialization since they combine intense land-atmosphere 87 

coupling processes with strong soil moisture persistence (Koster et al. 2004, Seneviratne et al. 88 

2006, Dirmeyer et al. 2011). The North-American Great Plains and the region between the 89 

Danube basin and the Mediterranean are often identified as belonging to these hotspots. Our 90 

study will focus mainly on these two regions, namely the Southern Great Plains (SGP) and the 91 

Balkan region (BKS). BKS and SGP boundaries are defined in Table 1 and highlighted by green     92 



 

boxes in Figure 2. The second phase of the Global Land-Atmosphere Coupling Experiment 93 

(GLACE-2, Koster et al. 2011), which consisted in a multi-model forecast quality assessment, 94 

showed that a realistic soil moisture initialization provides significantly improved skill for air 95 

temperature forecast up to two months ahead over the North American continent. More recent 96 

studies confirmed this positive impact up to seasonal timescales (Materia et al. 2014, 97 

Prodhomme et al. 2015). Prodhomme et al. (2015) described the benefits of soil initialization for 98 

the quality of temperature predictions over large parts of Eastern Europe up to four month 99 

forecast time. They could only achieve a successful hindcast of the summer of 2010 extreme 100 

heat over western Russia with a realistic soil moisture initialization. 101 

 102 

This study aims at exploring to what extent previous results are robust across a variety of 103 

forecast systems. Its originality lies in being the first multi-model assessment of soil moisture 104 

initialization impact on atmospheric predictability on seasonal timescales with ocean-105 

atmosphere coupled models over a nearly two-decade period. We use a highly comprehensive 106 

database of seasonal prediction experiments produced within the framework of the European 107 

FP7 SPECS (Seasonal-to-decadal climate Prediction for the improvement of European Climate 108 

Services) project and covering the 1992 to 2010 period. The following section describes the 109 

forecast systems and datasets used to perform the experiments and to assess their output. 110 

Section 3 focuses on the model systematic errors and on the predictive skill related to soil 111 

moisture initialization. Section 4 explains how the models respond to the soil moisture 112 

initialization over the two regions of interest (BKS and SGP) and precedes the discussion and 113 

conclusions to this study in section 5. 114 

 115 

2 Experimental design and methodology 116 

 117 

2.1 Overview of the experiments 118 

 119 

Five forecast systems (Table 2) have been used to perform twin sets of boreal summer season 120 

hindcasts over the 1992-2010 period. These simulations start at the beginning of May and span 121 

4 months, including the June-August trimester (JJA). 122 

 123 

For each system, the twin experiments consist of one control and one sensitivity experiment 124 

differing only by their land-surface initialization. The former is initialized with climatological 125 

surface fields while the latter is performed with initial conditions closer to observed interannual 126 

variations in soil moisture (hereafter ‘realistic’ initialization). The different strategies adopted to 127 

derive these initial conditions are detailed in the following subsection. All the experiments 128 

consist of 10-member ensemble simulations. The methods applied for the generation of the 129 

ensembles as well as the experimental design are summarized in Table 2. 130 

 131 

The five twin experiments allow the comparison of two fifty-member grand ensembles. They are 132 

named ALL-CLIM and ALL-INIT hereafter. We refer similarly to CLIM and INIT experiments 133 

when discussing individual forecast system results. The multi model approach diminishes the 134 

impact of individual model errors and thus leads to more reliable seasonal predictions (Palmer 135 

et al. 2004, Hagedorn et al. 2005). 136 



 

2.2 Land-surface initial conditions 137 

Different methods were used to generate the so-called ‘realistic’ initial conditions of soil moisture 138 

used in the ALL-INIT ensemble: 139 

- Atmosphere-Ocean General Circulation Model (AOGCM) 140 

simulation relaxed towards reanalyses: 141 

For MPI-ESM, divergence, vorticity, temperature and surface pressure were assimilated into the 142 

atmospheric component (ECHAM6) and temperature, salinity and sea-ice concentration into the 143 

ocean component (MPIOM). For data assimilation, ERA-Interim (hereafter ERAI, Dee et al. 144 

2011) is used for the atmosphere, ORAS4 for the ocean and NSIDC/Bootstrap for sea ice. No 145 

assimilation was performed in the LSM (JSBACH). 146 

- Standalone LSM simulation forced by atmospheric reanalysis 147 

This method was applied for the LSM component (JULES) of HADGEM3 applying WFDEI 148 

atmospheric forcing. 149 

- Land surface reanalysis dataset 150 

The last three models used the pre-existing daily dataset of land surface pseudo-reanalysis 151 

ERA-Interim/Land (hereafter ERALand, Balsamo et al. 2013). It results from a stand-alone run 152 

of the HTESSEL LSM, forced by ERA-Interim atmospheric fields and bias-corrected 153 

precipitation using the GPCP monthly climatology (Huffman et al. 2009) for precipitation. 154 

The two AOGCMs using the HTESSEL land component (namely EC-Earth and ECMWF System 155 

4) were initialized with May the 1st ERALand reanalyses, horizontally interpolated over the 156 

model grid. For CNRM-CM5, ERALand data was additionally interpolated onto the SURFEX 157 

vertical soil layers (which differ from the ERALand vertical distribution), while preserving the soil 158 

wetness index for each soil layer (Boisserie et al. 2015). 159 

 160 

These initial conditions were computed for the 1st of May start dates of each of the nineteen 161 

years of the seasonal re-forecast experiments, e.g. 1992 through 2010. The land-surface initial 162 

conditions for each of the five CLIM ensembles are obtained by averaging the initial conditions 163 

for the 1st of May from the corresponding INIT initial conditions. 164 

 165 

Snow initial conditions are also considered realistic with the described techniques to generate 166 

INIT initial conditions. However, different choices have been made for CLIM : snow fields were 167 

averaged for BSC-CLIM and MF-CLIM, similarly to soil moisture, while their yearly variability 168 

was preserved in the other three CLIM simulations. This experimental set-up inhomogeneity 169 

might affect the conclusions since significant snow-atmosphere coupling occurs during and after 170 

snowmelt over snow transition zones of the Northern hemisphere (Xu and Dirmeyer, 2011). 171 

However, this impact is considered limited in our regions of interest where the influence of snow  172 

in boreal summer is lower than in other seasons. 173 

2.3 Reference data and forecast quality assessment 174 

The monthly-mean precipitation observations used are the Global Precipitation Climatology 175 

Center (GPCC) (Schneider et al. 2008) gridded gauge analysis products, available at a 1º 176 

resolution, while monthly mean T2M reference data are provided by the CRU TS v.3.23 analysis 177 

(Harris et al. 2010). The ERA-Interim (Dee et al. 2011) dataset is used for daily averaged two-178 

meter temperature as well as daily-mean precipitation and daily maximum and minimum 179 

temperature (Tmax and Tmin, respectively) references as no other global daily precipitation or 180 

temperature data spans the full hindcast period. Both observational and model outputs were re-181 



 

gridded onto a T85 Gaussian grid and only land surface grid points are considered for score 182 

computations. 183 

 184 

The bias is computed as the mean difference between the model and the observed 185 

climatologies. We assume that the individual model drift does not depend on the start dates, 186 

meaning that no distinction between the different hindcast years is required to compute the 187 

model climatologies. Removing the bias is equivalent to considering observed and re-forecast 188 

anomalies relative to their respective climatologies. Thus, the skill of the simulation is evaluated 189 

by means of the correlation coefficient (r) between the predicted and the observed anomalies of 190 

a given variable. The difference rINIT minus rCLIM is computed at every grid point and then 191 

mapped to highlight regions impacted by the land-surface initialization. 192 

 193 

A confidence interval for correlations is provided by a 2-sided 95% confidence level t-test. The 194 

assessment of correlation differences between the CLIM and INIT simulations must take into 195 

account the degree of dependence between the two experiments as both are run over the same 196 

time period. To that end, the Hotelling-Williams t-test is computed (Steiger, 1980). 197 

In addition to correlation, the comparison of the root mean square error (RMSE) of each 198 

experiment through the root mean square skill score (RMSSS) helps in assessing how the soil 199 

moisture initialization affects the interannual departure from observations. The RMSSS, contrary 200 

to the RMSE, is positively-oriented so that a negative (positive) score means the INIT ensemble 201 

has lower (higher) skill than the CLIM ensemble. 202 

 203 

RMSSS=1 - RMSE(INIT)/RMSE(CLIM) 204 

 205 

The RMSSS is considered to be significantly different from 0 if RMSE(INIT) is not included into 206 

the confidence interval of RMSE(CLIM) computed through a 95% confidence level chi2 test. 207 

3 Results 208 

3.1 Bias analysis 209 

 210 

A preliminary analysis of the surface bias can provide insight on both individual and multi-model 211 

climatological limitations, as well as an overview of the ensemble consistency. Biases are 212 

estimated as the forecast-time dependent difference (temperature) or ratio (precipitation) 213 

between ensemble mean and reference data. The bias analysis can also contribute to 214 

understanding model differences in forecast skill. 215 

 216 

This analysis reveals almost indistinguishable differences in pattern and amplitude between the 217 

CLIM (Fig. S1) and INIT (Fig. 1) experiments for both T2M and precipitation fields. As expected, 218 

soil initialization used in these experiments does not alter the model climate in the seasonal re-219 

forecasts. 220 

 221 

JJA precipitation and temperature biases from individual models show relatively inconsistent 222 

patterns over Eurasia (Fig. 1). Over Eastern Siberia, the five models overestimate the amount of 223 

rainfall, although the very limited number of rain gauges available in that region (Fig. S2b) 224 

suggests that reference data may have a substantial level of uncertainty. Biases partly cancel 225 

out in the multi-model over Central Europe, but a notable dry and warm bias over the Steppes 226 



 

east of the Caspian Sea, and a strong wet bias over Eastern Russia and the Iberian Peninsula 227 

tend to stand out of the multi-model ensemble average. For the latter region as well as for the 228 

Steppes, since the observed amount of JJA precipitation is very low (Fig. S2a), small differences 229 

between these values can result in a strong relative bias. Over North America, in contrast, all 230 

models present fairly similar patterns of wet and slightly cold bias over Alaska and pronounced 231 

dry and warm bias over the Central Plains. This warm bias was also found in many models of 232 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) and would stem from excessive 233 

incoming shortwave radiation combined to a lack of evaporative fraction (Cheruy et al. 2014). 234 

We will discuss further how this could impact the seasonal forecast quality with respect to soil 235 

moisture initialization in section 4. This preliminary analysis confirms the interest of the multi-236 

model approach since the individual model climatologies show a number of similarities with 237 

each other and the multi-model biases are not excessively influenced by any one of the 238 

contributing models. 239 

 240 

Soil moisture biases are far more difficult to assess due to the scarcity of in-situ observations to 241 

be assimilated in any soil moisture reanalysis. Furthermore, remote sensing can only reflect the 242 

superficial soil layer state, without taking into account the deeper root-layer soil moisture, and 243 

do not necessarily provide a sufficient sampling for deriving reliable monthly mean values. Root-244 

zone soil moisture controls the plants’ transpiration and thereby plays a major influence on total 245 

evapotranspiration in vegetated areas. Finally, the limited knowledge of soil depth and global 246 

scale physical processes at stake leads to a large variety of land surface modelling techniques 247 

and parameters, which somewhat hampers the inter-model comparison of soil moisture as well 248 

as the comparison of simulated versus observed data. However, a straightforward way to gain 249 

insight on the simulated soil moisture is to consider the total soil water content of the entire soil 250 

depth averaged over specific regions for each model and to assess the relative evolution in time 251 

of its daily climatology. This evolution can be compared with that of ERALand.The assessment 252 

of the mean soil moisture over the SGP and BKS regions (Fig. S3) shows that the soil dries 253 

faster than the reference for four models out of the five analysed over both regions, although 254 

none of them shows any obvious abnormal evolution. However, for the SGP region, according 255 

to ERALand, there is little evolution in the soil water content during the first third of the forecast 256 

period, followed by a drying phase starting in mid-June. Only one forecast system evolves 257 

similarly to ERALand during the steady stage but retains somewhat too much water afterwards. 258 

The drying tendency occurs too early for the other systems. This suggests that in addition to the 259 

JJA precipitation bias discussed earlier, these models simulate either a deficit of rain in May and 260 

early June, or an excessive evapotranspiration, or both simultaneously. These results suggest 261 

that understanding not just the model bias, but also the forecast drift is essential to have a 262 

chance to correctly interpret the quality of a forecast system. 263 

3.2 Summer skill over boreal mid-latitudes 264 

Figure 2 shows the JJA seasonal anomaly correlations of ALL-CLIM and ALL-INIT for near 265 

surface temperature. Large parts of continents south of 50º N show significant T2M correlation 266 

in all the experiments. This feature could be attributed to the correct representation of ENSO 267 

teleconnections by the models, but also to the warming trend over the recent period, especially 268 

over Europe (Doblas-Reyes et al. 2013). These hypotheses are assessed by computing for 269 

each grid point the temporal correlation of JJA simulated T2M with respectively JJA observed 270 

T2M averaged over the Niño 3.4 region defined in Table 1 and JJA observed global T2M 271 

averaged over land. ENSO teleconnections, if present, do not seem to impact greatly the skill 272 



 

south of 50°N (Fig. S4a). Observations suggest that the models over-estimate the link between 273 

Niño 3.4 and Eastern Canada T2M. However, T2M over Eastern Canada, Southern Greenland 274 

and the Middle-East is significantly correlated with global T2M, with correlation values of similar 275 

amplitude to the hindcast skill (Fig. S4b). This is supported by observations over the same 276 

period (not shown) in addition to the longer 1979-2013 period (Fig S4d). On the contrary, the 277 

interannual simulated T2M over BKS and SGP is not significantly correlated to the global T2M 278 

during the hindcast period, meaning that the global warming trend does not account for most of 279 

the skill found over these regions. This is further confirmed by removing a linear trend from both 280 

experimental and reference data, which does not affect greatly the correlation pattern nor its 281 

values (Fig. 3).  282 

 283 

An overall increase of skill is found over Europe in the T2M correlation differences between INIT 284 

and CLIM (Fig. 4a). ALL-INIT is only outperformed by ALL-CLIM over the Iberian Peninsula, 285 

although not significantly, whereas the effect is either positive or neutral anywhere else. This 286 

skill enhancement is significant over Scandinavia, Ukraine and most of the Balkans peninsula. 287 

The assessment of the RMSSS computed with respect to the CLIM experiments (Fig. 4b) 288 

confirms these improvements. Over North America, soil initialization leads to a limited score 289 

improvement. The model even exhibits a significant decrease in skill over Central Canada. 290 

However, it should be kept in mind that this region has a poor temperature skill in the first place. 291 

Such upper latitude regions are considered to be in an energy-limited regime where the 292 

evaporative fraction of the surface energy budget is not controlled by soil moisture. Moreover, 293 

snow melting - soil freezing interactions within the HTESSEL model seem to generate too much 294 

and early runoff, which could have implications on soil moisture storage after the melting season 295 

(E. Dutra, personal communication). If this were the case, the May 1st land surface initial 296 

conditions derived from ERALand, which are used for three models out of five, could then be 297 

locally unsuitable. 298 

 299 

The multi-model ALL-CLIM (Fig. S5) and ALL-INIT (Fig. 5) display almost no skill for 300 

precipitation, except for Western North America. This could be related to the great influence of 301 

the ENSO activity on the local atmospheric circulation, although evidence of this teleconnection 302 

has been found mainly during the winter season (Quan et al. 2006, Yoon et al. 2015). This skill 303 

pattern should be considered with caution as the region receives limited amounts of precipitation 304 

during summer (Fig. S2), implying that correlation values may be influenced by extremely small 305 

differences in precipitation amounts. The difference of skill computed between INIT and CLIM 306 

for precipitation (Fig. 6a) is quite patchy over the Northern Hemisphere mid-latitudes. Moreover, 307 

the Iberian Peninsula, which results as one of the very few regions where the increase of 308 

correlation leads to significant predictive skill, receives limited amounts of rain in summer as 309 

mentioned earlier. Hence, small changes in simulated precipitation may greatly impact 310 

correlation values. The negligible improvement of RMSSS tends to support this hypothesis (Fig. 311 

6b) although models have already exhibited skill for precipitation over this region in past 312 

coordinated experiments (Diez et al. 2005) 313 

 314 

The results described above suggest that the BKS region is one of the most positively impacted 315 

by soil moisture initialization in terms of predictive skill for temperature. Furthermore, the multi-316 

model ensemble displays relatively weak temperature and precipitation biases over BKS (Fig. 317 

1), although one should keep in mind that some of the contributing models have pronounced 318 

biases of opposite signs. On the other hand, SGP was previously identified as a region with a 319 



 

high potential for seasonal predictability due to its sensitivity to soil moisture. This set of 320 

experiments did not show any skill increase over SGP associated to improved land surface 321 

initialization. A possible reason for this lack of sensitivity may be related to the common dry and 322 

warm bias of the five individual models. 323 

 324 

The next section of this paper therefore aims at providing insights on the reasons for such 325 

contrasted results over SGP and BKS. This is achieved by comparing the relationship for these 326 

two regions between the realistic initial soil moisture and the subsequent simulation of 327 

temperature and precipitation during the hindcast period. The next section intends to shed light 328 

on the link between the multi-model skill and the systematic error analysed so far. 329 

4 Preliminary understanding of the models response to realistic soil moisture initialization 330 

This section focuses on the two previously defined regions, namely BKS and SGP, to better 331 

understand the response of seasonal predictions to soil moisture initial conditions. 332 

 333 

The standard deviations of simulated JJA T2M anomalies over BKS and SGP are enhanced 334 

with realistic initial conditions, especially over SGP (Table 3) confirming the sensitivity of the 335 

models’ response to soil moisture conditions in summer. They also get closer to the observed 336 

standard deviation value in each region. To assess this sensitivity more closely, temporal 337 

correlations between detrended ERALand total soil water content at start dates and observed or 338 

simulated JJA T2M have been computed (Table 4). The time series of these anomalies are 339 

represented on Fig. 7 where the blue and red envelopes feature the temperature anomaly 340 

spread between individual model ensemble means for respectively CLIM and INIT simulations. 341 

In the following sections, both regions are analyzed separately.  342 

4.1 SGP region 343 

Over SGP, unlike in the observations, the simulated JJA T2M is significantly anticorrelated with 344 

the initial soil moisture for the five models. This is well illustrated in Fig. 7 where prevailing dry 345 

initial conditions in the early 2000’s coincide with warm simulated summers according to ALL-346 

INIT, which does not match observations. This implies that models tend to overestimate either 347 

the land-atmosphere coupling processes or their contribution among other factors that could 348 

explain interannual near-surface temperature variability. 349 

 350 

In order to provide further insight on the models’ response, 31-day running means of daily-351 

averaged simulated fields are correlated with the initial soil water content on May 1st over the 352 

re-forecast period. Results for temperature, precipitation and soil moisture according to the 353 

forecast time throughout the four months of simulation are presented in Fig. 8. The initial soil 354 

moisture is very persistent in the simulations, with a correlation coefficient close to 1 and barely 355 

decreasing throughout the summer. This persistence is also present in the reference soil 356 

moisture data, although less pronounced. This implies that initial dry (wet) anomalies in the 357 

models rarely turn into wet (dry) anomalies during the summer, while such changes in sign are 358 

marginally more likely in the reference data. When considering the INIT-ALL ensemble, initial 359 

soil moisture is correlated with both simulated precipitation and Tmax over SGP from the 360 

beginning of the period. This correlation grows stronger in time for a few days before reaching a 361 

plateau for Tmax at about 0.9, i.e. about 80% of variance explained, while it is about 0.6, about 362 

35% of variance explained, right from the start for precipitation and persists throughout the 363 

whole summer. On the other hand, in the reference data, the correlations are of the same sign 364 



 

as in the simulations but they are not significant and tend to zero after the first month for 365 

temperature. This suggests a larger amount of intraseasonal variability in the observational 366 

dataset that is not reproduced by the models. The latter tend to simulate a smoother evolution of 367 

the variables. 368 

 369 

Based on Seneviratne et al. (2010), the following mechanism could explain the simulated 370 

tendencies. Years with initial dry soils lead to reduced evapotranspiration, which inhibits 371 

precipitation and in turn increases soil dryness. As soil moisture decreases due to this positive 372 

feedback loop, it fails to respond to the evaporative demand, permitting the role of the sensible 373 

heat flux to grow in the surface energy budget, at the expense of the latent heat flux. This leads 374 

to higher daily Tmax, which triggers another positive feedback loop by increasing evaporative 375 

demand and thus reducing soil moisture content. At night, however, this mechanism is 376 

weakened by the development of a stable boundary layer decoupling the land surface from the 377 

atmosphere aloft. Based on an observational campaign over Kansas, Ha and Mahrt (2003) 378 

highlighted the development of a surface inversion primarily due to radiative cooling when 379 

turbulent fluxes collapse in the early evening. This could explain why simulated Tmin is not 380 

significantly anticorrelated to initial soil moisture during the first days, unlike Tmax. However, the 381 

anticorrelation becomes significant about two weeks later than for Tmax, ultimately reaching 382 

values comparable to those of Tmax. This feature of INIT-ALL is supported by three individual 383 

models but not by observations. The Tmin values are generally reached at the end of the night, 384 

when the diurnal soil moisture-temperature feedback loop is still off. This lagged co-variability of 385 

Tmin and soil moisture in the simulations could result from a progressive overall warming of the 386 

surface-boundary layer system. Depending on the stability regime of the nocturnal boundary 387 

layer over grassland (Mahrt 1999), turbulence due to wind shear at the top of the stable layer 388 

may redistribute downward the heat stored in the residual layer aloft. This mechanism competes 389 

with the suppression of turbulence by thermodynamic stability that favours nocturnal radiative 390 

cooling of the surface (McNider et al. 2010). However, the representation of such complex 391 

subgrid scale phenomena in large-scale GCMs is likely to be inadequate and a source of model 392 

error.  393 

 394 

It is beyond the scope of this study to determine the reasons for the discrepancies between the 395 

coupled model simulations and the observations. However, the similarities between forecast 396 

systems in terms of correlation between initial soil moisture and summer variables likely relate 397 

to their similarities in terms of biases. If the simulated climate over SGP is too dry, as suggested 398 

in section 3.1, the models' evapotranspiration remains strongly controlled by soil moisture but its 399 

absolute value and variations are too small to impact climate variability (Seneviratne et al. 400 

2010). An additional explanation can be provided by the development of the biases over SGP 401 

during the forecast (Fig. 9). The simulated climatologies look smoother than for the reference 402 

data because they result from a ten-member averaging. The comparison of the precipitation 403 

daily climatologies (Fig. 9a) show that for four models out of five, the deficit of daily rainfall 404 

establishes at the beginning of June and persists throughout summer. On the contrary, the 405 

Tmax biases (Fig. 9b) develop at a different rate and reach different amplitudes among forecast 406 

systems. Nonetheless, all of them switch from neutral or cold biases during the first month to 407 

warm by the end of summer. In some cases, this warm systematic error starts to grow up to  408 

forty days after the appearance of the precipitation bias. The contrast between simultaneous 409 

precipitation biases and asynchronous temperature biases supports, albeit without confirming it, 410 

the hypothesis that the majority of models have a limited capacity to represent accurate 411 



 

precipitation in summer over this region. A number of studies suggest that summer precipitation 412 

regime in that region has particular features that makes it very challenging to model properly. 413 

These particularities are the atypical diurnal cycle of precipitation with a nocturnal maximum in 414 

summer (Klein et al. 2006), the meso-scale systems that account for much of the warm season 415 

precipitation (Mearns et al. 2012), or the atmospheric low-level jet that substantially contributes 416 

to the moisture budget of this region and influences nocturnal convection triggering (Bellprat et 417 

al., 2016). If confirmed, this dry bias would trigger the excessive soil drying and its reduced 418 

ability to respond to the evaporative demand, eventually leading to the aforementioned 419 

feedback loop with the atmosphere that amplifies temperature biases. 420 

 421 

Tackling this bias issue seems to be a prerequisite for the forecast systems to make the most 422 

out of the soil moisture initial conditions and thus to improve the prediction skill over SGP 423 

Nonetheless, a dedicated study would be required to disentangle the role of the biases from that 424 

of potential shortcomings in the simulated surface processes. 425 

4.2 BKS region 426 

Over BKS, the two hottest summers of the period, namely 2003 and 2007, had both drier initial 427 

soil moisture conditions than average. These are correctly predicted only with the INIT 428 

ensemble (Fig. 7). Similar results are found with the cooler than average summers of 1996, 429 

1997 and 2006 despite wet initial anomalies of relatively low amplitude. Observations, as well as 430 

the INIT multi-model ensemble, show significant correlation between the initial soil moisture and 431 

summer T2M for the BKS region (Table 4). Yet, when considering the individual forecast 432 

systems, no relationship could be established between this correlation and the gain of skill 433 

permitted by land surface initialization over BKS (as shown in Figure S6). Hence, the increase in 434 

T2M correlation related to land surface initialization in this region does not result from local 435 

linear processes - such as persistence - derived from initial soil moisture anomalies.  436 

 437 

A correlation analysis similar to that performed for the SGP region (Fig. 8) is displayed for the 438 

BKS region on Figure 10. It shows very distinct correlation features among forecast systems. 439 

The different systems do not highlight any common process that would help explaining the gain 440 

of skill in this region. It is likely that a wider range of processes related to soil moisture coupling 441 

with the atmosphere with contradictory effects are at play. As opposed to the SGP region, the 442 

BKS region is characterized by a steep topography and the proximity of the sea. Based on 443 

regional meso-scale simulations over France, Stéfanon et al. (2014) highlighted different soil 444 

moisture-temperature responses over low-elevation plains, mountains and coastal regions 445 

during heat waves. Over plains, the dominant mechanism is consistent with the positive 446 

feedback loop described earlier. Over mountains, on the other hand, enhanced heat fluxes due 447 

to dry anomalies can reinforce upslope winds and favor convective precipitation with a 448 

subsequent cooling effect, hence a negative feedback. Dry anomalies can also enhance the 449 

gradient of diurnal near surface temperature between the air above coastal land and sea. This 450 

could trigger anomalous moist advection from the sea through the breeze process, resulting in a 451 

negative feedback on T2M over land. These last two meso-scale mechanisms may compete 452 

with the first one over BKS, in spite of the relatively low resolution of the models used. Since the 453 

five forecast systems have quite distinct spatial resolutions, it is likely that the impact of these 454 

mesoscale processes, if represented, differs greatly. 455 

 456 



 

What could therefore explain the successful prediction of the hottest summers of 2003 and 2007 457 

conditioned to realistic soil moisture initialization, as indicated by Fig.7 ? The study from Conil et 458 

al. (2008) based on a single AGCM showed that the benefit of a realistic land surface 459 

initialization for summer predictions appears when widespread and strong soil moisture 460 

anomalies are observed at the beginning of the season. This result was found over typical land-461 

atmosphere coupling hotspots, namely central North America and Eastern Europe. The present 462 

work tends to generalize this result for the latter region when initial anomalies are negative. 463 

Furthermore, Quesada et al. (2012) showed observational evidence of an asymmetry in hot day 464 

predictability over Europe. Wet springs lead to a reduced number of hot summer days 465 

regardless of the dominant large-scale weather pattern during summer, while dry springs 466 

precede a greater number of hot days only if anticyclonic weather types prevail during the 467 

summer. From these studies and our results, we can infer that initializing soil moisture 468 

realistically is a necessary condition for models to predict abnormally warm summers, but not a 469 

sufficient one. We hypothesize here that in the case of pronounced dry initial anomalies over the 470 

BKS region, forecast systems agree on the dominant process of positive feedback between low 471 

soil moisture, reduced fraction of latent heat flux and warmer temperature. However, as 472 

mentioned earlier, verifying this statement would require additional studies with a dedicated 473 

experiment framework. 474 

5 Conclusion and Discussions 475 

A set of multi-model seasonal prediction experiments aiming at assessing the impact of land 476 

surface initial conditions on boreal summer predictability has been carried out in the framework 477 

of the FP7-SPECS European project. Five distinct global coupled ocean-atmosphere forecast 478 

systems were run with 10 members each, initialized on May 1st over the period 1992 to 2010 479 

with climatological soil moisture conditions for the reference experiment, and realistic ones for 480 

the sensitivity experiment. For both experiments, the 50 resulting members have been 481 

considered together as a large multi-model ensemble. This is the first multi-model experiment 482 

assessing the added-value of initializing the land surface in a ‘real’ prediction context, as 483 

opposed to potential predictability and/or purely AGCM frameworks. It therefore provides the 484 

most robust assessment of land surface initialization impact on boreal summer prediction quality 485 

to date. The comparison of precipitation and near surface temperature scores show evidence of 486 

an enhanced predictive skill over large parts of Europe for realistically versus climatologically 487 

initialized simulations, although mainly for temperature and with a significant increase limited to 488 

a few regions. No such conclusion can be drawn for Asia and North America. 489 

 490 

Previous studies had identified several mid-latitude regions with a high summer prediction 491 

potential a few months in advance, stemming from intense land-atmosphere coupling combined 492 

with long-lasting soil moisture memory. Among them, the Balkans proved to actually gain 493 

predictability from a more accurate soil moisture initialization, unlike the Southern Great Plains 494 

of North America where no improvement was achieved.Over the latter region, the five models 495 

show very similar overestimates of the correlation between initial soil moisture anomalies and 496 

summer daily maximum temperature (Tmax) and daily mean precipitation with respect to the 497 

correlation estimated from reference data. A locked positive feedback settles between dry (wet) 498 

soil moisture anomalies leading to increased (decreased) Tmax and precipitation deficit, which 499 

favours in turn an increase of the soil moisture anomaly. This overestimated feedback over SGP 500 

is likely related to the systematic errors for temperature and precipitation, and in the excessive 501 

decrease of soil water content during the early stage of the summer simulated by the majority of 502 



 

forecast systems. Thus, biases appear as potential culprits in the lack of predictive skill 503 

enhancement with respect to soil moisture initialization over SGP. Previous studies based on 504 

CMIP experiments pointed out at model deficiencies in both cloud physics and 505 

evapotranspiration processes that should be addressed over the Great Plains to reduce 506 

systematic biases (Cheruy et al. 2014).  507 

 508 

For the BKS region, the coupling of soil moisture with temperature and precipitation could be 509 

driven by various processes with opposite feedbacks. Nonetheless, for some years with a 510 

pronounced dry initial anomaly, summer predictions from distinct models agree on a warm JJA 511 

T2M anomaly. It is likely that in the case of dry soil moisture anomalies combined with prevailing 512 

anticyclonic weather regimes during summer such as Blocking or Atlantic Low (Quesada et al. 513 

2012), the land-atmosphere coupling processes simulated by different models over BKS 514 

converge towards a similar dominant process or feedback loop. 515 

 516 

Previous studies suggested a potential remote impact of soil moisture initialization on summer 517 

temperature prediction (Van den Hurk et al. 2012, Koster et al. 2014), that could be related to an 518 

alteration of the atmospheric circulation either locally or remotely (Fischer et al. 2007). The 519 

correlations between JJA T2M averaged over BKS and initial soil moisture computed on every 520 

grid point for OBS and INIT (Fig. S7a) do not rule out such a hypothesis, since a few common 521 

patterns appear such as high positive correlations over Northern Europe and negative 522 

correlations East of the Black Sea. However these patterns are not large or significant enough 523 

to conclude on this potential remote influence. 524 

 525 

A limitation of this study stems from the discrepancies between experimental protocols for each 526 

participating forecast system. For instance, it does not clearly disentangle the potential impact of 527 

snowpack initial conditions as two contributors out of five averaged out snow cover parameters 528 

in addition to soil moisture parameters to produce climatological initial conditions. According to 529 

Xu and Dirmeyer (2011), the snow-atmosphere coupling strength can be considerable during 530 

snowmelt and up to several weeks after that, due to the albedo and subsequent soil moisture 531 

states. Even if the similarity of the models' response in this study suggests a limited impact in 532 

our regions of interest, this pleads for a more careful assessment of snow cover and snow water 533 

equivalent in the initial conditions of subseasonal to seasonal summer predictions. The diversity 534 

of spatial resolution also hampers the investigation of potential physical processes at play. 535 

Furthermore, our study does not take into account the proportion of the total soil water content 536 

in models and in the reference data that is prone to imprint the atmosphere at seasonal scale by 537 

means of evapotranspiration. A focus on the soil wetness index of the root layer instead of the 538 

total soil water content is required to further disentangle the processes involved in the soil-539 

moisture surface climate interplays and the associated predictability. The use of ERALand for 540 

soil moisture initialization and as a reference data might be a source of uncertainties since no 541 

in-situ nor remote-sensed soil observations are assimilated in this product. Nonetheless, state-542 

of-the-art global remote sensed soil moisture products usually estimate superficial soil wetness. 543 

Hirschi et al (2012) pointed out the limitations of a mere extrapolation of observed superficial 544 

soil moisture to the root-zone and suggests an assimilation of these data in a land-surface 545 

model to obtain a more realistic product. These limitations should be addressed when defining 546 

the set-up of the predictability experiment of the Land Surface, Snow and Soil moisture Model 547 

Intercomparison Project (LS3MIP, van den Hurk et al. 2016). 548 

 549 



 

In the light of our results, two main topics would require future research and attention in the 550 

community. The first one is that of the initialization technique, a potential caveat of this study. 551 

The climatology and variability of distinct AOGCM land components may differ greatly because 552 

of the diversity of parametrizations and the limited constraints with respect to the atmospheric 553 

component. This questions the technique of initializing a model with data derived from another 554 

model. However, even if the land initial conditions are computed from an offline simulation of the 555 

same LSM that is then used in the coupled model simulation, initial shocks and spin-up may 556 

occur due to inconsistencies at the land-atmosphere interface and ultimately degrade the 557 

prediction skill. A cleaner initialization would imply to perform either a coupled data assimilation 558 

or a coupled nudging towards observational data for each forecast system individually. 559 

However, this technique does not explicitly correct the simulated precipitation, which can remain 560 

biased and thus lead to an unrealistic soil water content. A correction of precipitation in this case 561 

might jeopardize the water balance of the model. Therefore, the best initialization strategy is still 562 

an open question, and may very well be model-dependent.  563 

 564 

The role of vegetation and land-use on continental climate predictability is the second issue that 565 

could be of great interest in future works. Previous studies have demonstrated that the use of 566 

interactive vegetation affects precipitation variability (Alessandri and Navarra, 2008) as well as 567 

T2M seasonal predictability over the continents (Weiss et al. 2012, Alessandri et al. 2016). The 568 

extensive use of irrigation and crop growing practices can affect water fluxes between the soil 569 

and the atmosphere. Mueller et al (2015) showed evidence that agricultural intensification - and 570 

to a lesser extent increased irrigation -  over the past century led to cooler temperature 571 

extremes and enhanced rainfall during the growing season in the North American Midwest. 572 

These features are not taken into account in the coupled models used in this paper whereas 573 

they affect atmospheric observations assimilated in the reference data. The results of the 574 

present study plead for a coordinated seasonal prediction effort aiming at enlightening the 575 

impact of vegetation and land-use on summer predictive skill over mid-latitudes. 576 

 577 
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Tables 757 

 758 

 Coordinates 

BKS 15°E-25°E 

40°N-50°N 

SGP 105°W-95°W 

35°N-45°N 

Niño 3.4 120°W-170°W 

5°S-5°N 

Table 1: Boundary coordinates of the BKS, SGP and Niño 3.4 boxes 759 



 

 760 

Exp. Name Model Horizontal 

Resolution 

Vertical levels Ensemble 

generation 

Land surface 

component 

Land surface 

initialization 

Atmosphere, 

ocean and sea-

ice initializations 

MPI-CLIM 

MPI-INIT 

MPI-ESM 
v.1.1.00 
(Stevens et al., 
2013) 

Atm/Land:T63 
(~300 km) 
 
Ocean: GR15 

(two poles in 

Greenland / 

Antarctica, 1.5 

degree 

resolution) 

Atm: 47 

Ocean: 40 

Atm: slight 
disturbance of 
stratospheric 
diffusion 
Ocean: 
breeding 
vectors (Baehr 
& Piontek, 
2014) 

JSBACH 

(Raddatz et al., 

2007) 

GCM run with 

nudging of  the 

atmosphere, 

superficial 

ocean and sea-

ice towards 

reanalyses 

(resp. ERAI, 

ORAS4 and 

NSIDC) 

atm:ERAI 

ocean:ORAS4 

sea-ice:NSIDC 

EC-CLIM 

EC-INIT 

ECMWF Sys4 Atm/Land: 
N128 (TL255, 
~80km) 
 
Ocean: NEMO 
ORCA 1° L42 

Atm: 91  

Ocean: 42 

singular vectors CHTESSEL-
Lakes 
(Boussetta et 
al. 2012) 

ERALand 
horizontal 
interpolation 
(same model) 

Atm: ERAI 

Ocean: ORAS4 

MF-CLIM 
MF-INIT 

CNRM-CM5 
(Voldoire et al. 
2013 

Atm/Land: 
Tl127 (~150 
km) 
 
Ocean: NEMO 
Orca 1º L42 

Atm: 91  
 
Ocean: 42 

Initial 
atmospheric 
perturbations 

SURFEX V7.2 
(Masson et al. 
2012) 

ERALand 
horizontal and 
vertical 
interpolation 
with 
conservative 
Total Soil 
Wetness Index 
(different 
model) 

Atm: ERAI 
 
Ocean: ORAS4 
 
Sea-ice: restarts 
from a nudged 
run 

BSC-CLIM 
BSC-INIT 

EC-Earth V2.3 
(Hazeleger et 
al. 2012) 

Atm/Land: 
T106 (~120km) 
 
Ocean: NEMO 
Orca 1° 

Atm: 91 
 
Ocean: 46 

Singular 
vectors in the 
atmosphere; 
different 
members of 
ORAS4 
reanalyses for 
the ocean 

HTESSEL ERALand 
horizontal 
interpolation 
(same model) 

Atm: ERAI 
 
Ocean: ORAS4 
 
Sea-ice: IC3 
analysis 
 

MO-CLIM 
MO-INIT 

GloSea5 
(Maclachlan et 
al., 2015) 

Atm/Land: 
N216 (~50km) 
 
Ocean: ORCA 
0.25° 

Atm : 85 
 
Ocean:75 

Lagged start 
dates and 
SKEB 
stochastic 
physics 
scheme 

JULES  
(Best et al., 
2011) 

JULES offline 
run driven with 
WFDEI 
atmospheric 
data (Weedon 
et al., 2014) 

Atm: ERAI 
 
Ocean and sea-
ice: GloSea5 
reanalysis 
(Waters et al., 
2015 

Table 2: Summary of the simulations 761 



 

 762 

 BKS SGP 

OBS 0.69 1.01 

ALL-CLIM 0.40 0.51 

ALL-INIT 0.50 0.88 

Table 3: Standard deviation of JJA area-averaged T2M anomaly (K) 

 

 BKS SGP 

OBS -0.58* 0.18 

ALL-INIT -0.50* -0.64* 

MPI-INIT -0.46* -0.53* 

MO-INIT -0.71* -0.6* 

MF-INIT -0.35 -0.53* 

EC-INIT -0.23 -0.48* 

BSC-INIT -0.20 -0.55* 

Table 4: Anomaly correlations of detrended ERALand May 1st total soil moisture with detrended 

area-averaged June-to-August T2M. 95% confidence significant values are marked by a star 



 

Figure captions 763 

 764 

Fig 1: Biases for June-to-August average near-surface temperature in K with respect to CRU TS 765 

v.3.23 (left panel) and relative biases for accumulated precipitation in % with respect to GPCC (right 766 

panel). The right-hand side large map corresponds to the multi-model ALL-INIT, small left-hand side 767 

maps correspond to each individual forecast system. 768 

 769 

Fig 2: Anomaly correlation between the reference data and the June-to-August average near-770 

surface temperature for ALL-CLIM (a) and ALL-INIT (b). Dots mark those points where the 771 

correlations are significantly different from zero with a 95% confidence level 772 

 773 

Fig 3: Same as Fig 2b with linearly detrended anomalies 774 

 775 

Fig4: (a) Anomaly correlation difference ALL-INIT minus ALL-CLIM and (b) Root Mean Square Skill 776 

Score ALL-INIT vs. ALL-CLIM for detrended June-to-August average near-surface temperature. Dots 777 

mark those points where the difference (the skill score) is significantly different from zero with a 95% 778 

confidence level 779 

 780 

Fig 5: Anomaly correlation between the reference data and the June-to-August average 781 

accumulated precipitation for ALL-INIT 782 

 783 

Fig 6: Same as Fig 4 for precipitation 784 

 785 

Fig 7: Top: detrended June-to-August near-surface temperature anomaly inK. ERAInt (black solid 786 

line), ALL-CLIM and CLIM multimodel spread (blue solid line and blue envelope, respectively), ALL-787 

INIT and INIT multimodel spread (red solid line and red envelope, respectively) for SGP (left) and 788 

BKS (right) 789 

Bottom: detrended ERALand soil water content anomaly on May 1st for SGP (left) and BKS (right) in 790 

m3.m-3 791 

 792 

Fig 8: Correlation between May 1st total soil water content and 31-day running mean of daily 793 

maximum temperature (red), minimum temperature (blue), precipitation (green) and total soil water 794 

content (gray) for individual model ensemble mean (left), multi-model ensemble mean (top right) and 795 

observations (bottom right) over the SGP region.Significant correlations are displayed with circles 796 

 797 

Fig 9 : Individual model ensemble mean and observations daily climatologies of (a) maximum 

temperature in K and (b) cumulated precipitation in mm over the SGP region. 

 

Fig 10: Same as Fig 8 over the BKS region 798 799 


