81 research outputs found

    Elektrophysiologische und pharmakologische Untersuchungen zur Relevanz kardialer Ionenkanäle bei Arrythmien

    Get PDF
    In der vorliegenden Arbeit wurden drei experimentelle Ansätze gewählt, um kardiale Ionenkanäle zu charakterisieren, die möglicherweise einen Einfluss auf das atriale Aktionspotential haben könnten und die somit potentielle neue Ziel-­Gene für die Entwicklung neuer Antiarrhythmika darstellen könnten. Ein Schwerpunkt dieser Arbeit war die pharmakologische Untersuchung der Rolle des Schwellungs­aktivierten Chloridkanals I Cl,swell für das atriale Aktionspotential. In einer weiteren Studie wurde eine neue regulatorische Untereinheit des hKv4.3-­Kanals identifiziert sowie deren physiologische Bedeutung für die Aktivität des transienten Kalium-­Auswärtsstroms I to1 charakterisiert. Schließlich wurde ein neuer Kaliumkanal, TASK­-4, kloniert, der im humanen Herzen ausschließlich im Atrium vorkommt und deshalb einen Einfluss auf die Erregbarkeit des Herzvorhofs ausüben könnte. Unter mehreren Ethacrynsäure-­Derivaten konnte mit DCPIB ein neuer potenter Blocker des I Cl,swell identifiziert werden. Nachfolgende Patch-­Clamp­ und Zwei-­Mikroelektroden­ Spannungsklemmen­-Analysen verschiedener nativer und heterolog exprimierter Anionen­ und Kationenkanäle zeigten, dass DCPIB spezifisch den I Cl,swell Strom hemmt. Dies war eine Voraussetzung, um die Funktion des I Cl,swell beim atrialen Aktionspotential während osmotischer Zellschwellung zu untersuchen. Die Schwellung atrialer Kardiomyozyten führte zur Aktivierung des I Cl,swell und als Folge davon zu einer starken Verkürzung der Aktionspotentialdauer. Diese war durch DCPIB vollständig hemmbar. Unter basalen Bedingungen hatte DCPIB keinen Effekt auf das Aktionspotential. Diese Ergebnisse lassen den Schluss zu, dass die Aktivierung des I Cl,swell unter pathologischen Bedingungen, die mit einer kardialen Zellschwellung einhergehen, eine ursächliche Rolle beim Auftreten von Arrhythmien spielen kann. Viele frühere Untersuchungen über die Rolle des I Cl,swell bei Arrhythmien erfolgten am Rattenherzen. Unter Verwendung von DCPIB konnten wir aber zeigen, dass die in atrialen und ventrikulären Myozyten von normalen und von hypertrophierten Rattenherzen beschriebenen Chloridströme nicht durch den I Cl,swell hervorgerufen werden. Das Fehlen des I Cl,swell im Rattenherzen stellt damit diese früheren Ergebnisse in Frage. Eine weitere Leitfähigkeit, die im menschlichen Herzen zur Repolarisation der kardialen Membranen während dem Aktionspotential beiträgt, ist der 'Plateau-­Strom" I Kp , der in seinen kinetischen Eigenschaften TWIK­ oder TASK­-artigen Kaliumkanälen ähnelt. Als erster Schritt bei der Identifizierung der molekularen Identität dieses Kaliumkanals wurde in dieser Arbeit mit TASK­-4 ein neues Mitglied der Säure­sensitiven Tandem­-von-­zwei­-Poren­-Kaliumkanälen kloniert. Die heterologe Expression des TASK­-4 in Xenopus­-Oozyten erzeugte Kaliumströme, die eine starke Auswärts-­Rektifizierung zeigten, die jedoch bei Erhöhung der extrazellulären Kaliumkonzentration verloren ging. Die TASK­-4-­Ströme waren abhängig vom extrazellulären pH-­Wert, wobei die pH­-Sensitivität im Vergleich zu den anderen TASK-­Kanälen zu mehr alkalischen Werten verschoben war. Außerdem zeigten die TASK­-4-­Ströme die für TASK-­ Kanäle typischen pharmakologischen Eigenschaften. Aufgrund des Vorkommens von TASK­-4 im Atrium und dem Atrioventrikular-­Knoten des menschlichen Herzens stellt dieser Kaliumkanal einen neuen potentiellen Angriffspunkt für die Entwicklung eines Vorhof­ spezifischen Antiarrhythmikums dar. Im Gegensatz zu dem I Kp ­Strom ist der Ca 2 ­unabhängige transiente Kalium-­Auswärtsstrom I to1 des Herzens für die initiale Phase der Repolarisation während des Aktionspotentials verantwortlich. In vielen Regionen des Herzens trägt die ­Untereinheit des hKv4.3­ Kaliumkanals zum I to1 ­Strom bei. In dieser Arbeit wurde mit hKChIP2 erstmals eine regulatorische Untereinheit des I to1 identifiziert. Northern­-Blot­-Analysen haben gezeigt, dass das hKChIP2­-Gen ausschließlich im humanen Herzen exprimiert ist, wobei es im Atrium und Ventrikel des adulten humanen Herzens, aber nicht im fötalen Herzen, vorkommt. Weiterhin konnten wir eine neue kurze Spleiß-­Variante des hKChIP2­-Gens (hKCNIP2) isolieren und durch PCR­-Analyse nachweisen, dass diese im menschlichen Herzen die Hauptform des hKChIP2 darstellt. Die Koexpression des hKv4.3 mit beiden hKChIP2­-Isoformen in Xenopus­ - Oozyten bewirkte eine Zunahme der Stromamplitude, eine Verschiebung der Spannung der halb­maximalen Inaktivierung und eine stark beschleunigte Erholung von der Inaktivierung der hKv4.3-­Kanäle, die in Anwesenheit von hKChIP2 deutlich mehr dem nativen I to1 ­Kanal des humanen Epikards ähnelten. Unsere Ergebnisse sprechen sehr stark dafür, dass hKChIP2 eine physiologisch wichtige regulatorische Untereinheit des hKv4.3 ist, die auch zur Heterogenität der I to1 ­Ströme im humanen Herzen beiträgt. Da der I to1 ­Kanal an der Entstehung und dem Fortschreiten verschiedener Herzkrankheiten wie den Arrhythmien und der Herzinsuffizienz beteiligt ist, stellt hKChIP2 ein neues Ziel­-Gen für die Entwicklung neuer zukünftiger Klasse­ III-­Antiarrhythmika dar. Die in Kooperation mit der Universität Istanbul durchgeführte Aufklärung der Exon­-Intron-­Organisation des hKCNIP2­-Gens liefert zudem die Grundlage für ein zukünftiges systematisches Screening nach Mutationen im hKChIP2­-Gen in Familien mit vererbbaren Arrhythmien

    Functional Characterization of a Spectrum of Novel Romano-Ward Syndrome KCNQ1 Variants

    Get PDF
    The KCNQ1 gene encodes the α-subunit of the cardiac voltage-gated potassium (Kv) channel KCNQ1, also denoted as Kv7.1 or KvLQT1. The channel assembles with the ß-subunit KCNE1, also known as minK, to generate the slowly activating cardiac delayed rectifier current IKs, a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function variants in KCNQ1 cause the congenital Long QT1 (LQT1) syndrome, characterized by delayed cardiac repolarization and a QT interval prolongation in the surface electrocardiogram (ECG). Autosomal dominant loss-of-function variants in KCNQ1 result in the LQT syndrome called Romano-Ward syndrome (RWS), while autosomal recessive variants affecting function, lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. The aim of this study was the characterization of novel KCNQ1 variants identified in patients with RWS to widen the spectrum of known LQT1 variants, and improve the interpretation of the clinical relevance of variants in the KCNQ1 gene. We functionally characterized nine human KCNQ1 variants using the voltage-clamp technique in Xenopus laevis oocytes, from which we report seven novel variants. The functional data was taken as input to model surface ECGs, to subsequently compare the functional changes with the clinically observed QTc times, allowing a further interpretation of the severity of the different LQTS variants. We found that the electrophysiological properties of the variants correlate with the severity of the clinically diagnosed phenotype in most cases, however, not in all. Electrophysiological studies combined with in silico modelling approaches are valuable components for the interpretation of the pathogenicity of KCNQ1 variants, but assessing the clinical severity demands the consideration of other factors that are included, for example in the Schwartz score

    A new strategy for multitarget drug discovery/repositioning through the identification of similar 3D amino acid patterns among proteins structures: The case of Tafluprost and its efects on cardiac ion channels

    Get PDF
    The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’ activity and discuss its possible repositioning as a novel antiarrhythmic drug.This research was funded by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) grants numbers 1191133, 1170662 and from Spanish Ministry of Economy and Competitiveness (projects SEV-2015-0493 and TIN2015-65316-P, grant BES-2016-078046), and from Generalitat de Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328). The financial support by DICYT-USACH grant 5392102RP-ACDicyt is also acknowledged. The web-server is hosted in the cluster obtained with the grant CONICYT-FONDEQUIP-EQM160063.Peer ReviewedPostprint (published version

    Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease

    Get PDF
    Parkinson’s disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson’s disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca(2+)-activated K(+) (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction

    Identification of a critical binding site for local anaesthetics in the side pockets of Kv1 channels

    Get PDF
    © 2021 The Authors.[Background and Purpose]: Local anaesthetics block sodium and a variety of potassium channels. Although previous studies identified a residue in the pore signature sequence together with three residues in the S6 segment as a putative binding site, the precise molecular basis of inhibition of Kv channels by local anaesthetics remained unknown. Crystal structures of Kv channels predict that some of these residues point away from the central cavity and face into a drug binding site called side pockets. Thus, the question arises whether the binding site of local anaesthetics is exclusively located in the central cavity or also involves the side pockets. [Experimental Approach]: A systematic functional alanine mutagenesis approach, scanning 58 mutants, together with in silico docking experiments and molecular dynamics simulations was utilized to elucidate the binding site of bupivacaine and ropivacaine. [Key Results]: Inhibition of Kv1.5 channels by local anaesthetics requires binding to the central cavity and the side pockets, and the latter requires interactions with residues of the S5 and the back of the S6 segments. Mutations in the side pockets remove stereoselectivity of inhibition of Kv1.5 channels by bupivacaine. Although binding to the side pockets is conserved for different local anaesthetics, the binding mode in the central cavity and the side pockets shows considerable variations. [Conclusion and Implications]: Local anaesthetics bind to the central cavity and the side pockets, which provide a crucial key to the molecular understanding of their Kv channel affinity and stereoselectivity, as well as their spectrum of side effects.The study was supported by the Ministerio de Ciencia e Innovación (MICINN, Spain) Grants SAF2016-75021-R and PID2019-104366RB-C21 (to C.V. and T.G.); the European Regional Development Fund (Fondo Europeo de Desarrollo Regional [FEDER]) and the Instituto de Salud Carlos III CIBERCV programme CB/11/00222 (to C.V. and T.G.); the Consejo Superior de Investigaciones Científicas (CSIC) Grants PIE201820E104 and 2019AEP148 (to C.V.); the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1191133 and the Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP) 160063 grants from ANID (to W.G.); and the Deutsche Forschungsgemeinschaft (DFG) Grant DE1482-4/1 to N.D

    Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons

    Get PDF
    Evolving concepts on Parkinson's disease (PD) pathology suggest that α-synuclein (aSYN) promote dopaminergic neuron dysfunction and death through accumulating in the mitochondria. However, the consequence of mitochondrial aSYN localisation on mitochondrial structure and bioenergetic functions in neuronal cells are poorly understood. Therefore, we investigated deleterious effects of mitochondria-targeted aSYN in differentiated human dopaminergic neurons in comparison with wild-type (WT) aSYN overexpression and corresponding EGFP (enhanced green fluorescent protein)-expressing controls. Mitochondria-targeted aSYN enhanced mitochondrial reactive oxygen species (ROS) formation, reduced ATP levels and showed severely disrupted structure and function of the dendritic neural network, preceding neuronal death. Transmission electron microscopy illustrated distorted cristae and many fragmented mitochondria in response to WT-aSYN overexpression, and a complete loss of cristae structure and massively swollen mitochondria in neurons expressing mitochondria-targeted aSYN. Further, the analysis of mitochondrial bioenergetics in differentiated dopaminergic neurons, expressing WT or mitochondria-targeted aSYN, elicited a pronounced impairment of mitochondrial respiration. In a pharmacological compound screening, we found that the pan-caspase inhibitors QVD and zVAD-FMK, and a specific caspase-1 inhibitor significantly prevented aSYN-induced cell death. In addition, the caspase inhibitor QVD preserved mitochondrial function and neuronal network activity in the human dopaminergic neurons overexpressing aSYN. Overall, our findings indicated therapeutic effects by caspase-1 inhibition despite aSYN-mediated alterations in mitochondrial morphology and function

    In Vitro Analyses of Novel HCN4 Gene Mutations

    Get PDF
    Background/Aims: The hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 contributes significantly to the generation of basic cardiac electrical activity in the sinus node and is a mediator of modulation by β–adrenergic stimulation. Heterologous expression of sick sinus syndrome (SSS) and bradycardia associated mutations within the human HCN4 gene results in altered channel function. The main aim was to describe the functional characterization of three (two novel and one known) missense mutations of HCN4 identified in families with SSS. Methods: Here, the two-electrode voltage clamp technique on Xenopus laevis oocytes and confocal imaging on transfected COS7 cells respectively, were used to analyze the functional effects of three HCN4 mutations; R378C, R550H, and E1193Q. Membrane surface expressions of wild type and the mutant channels were assessed by confocal microscopy, chemiluminescence assay, and Western blot in COS7 and HeLa cells. Results: The homomeric mutant channels R550H and E1193Q showed loss of function through increased rates of deactivation and distinctly reduced surface expression in all three homomeric mutant channels. HCN4 channels containing R550H and E1193Q mutant subunits only showed minor effects on the voltage dependence and rates of activation/deactivation. In contrast, homomeric R378C exerted a left-shifted activation curve and slowed activation kinetics. These effects were reduced in heteromeric co-expression of R378C with wild-type (WT) channels. Conclusion: Dysfunction of homomeric/heteromeric mutant HCN4-R378C, R550H, and E1193Q channels in the present study was primarily caused by loss of function due to decreased channel surface expression

    Sigma-1 receptor modulation fine-tunes KV1.5 channels and impacts pulmonary vascular function

    Get PDF
    KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.This work was supported by Ministerio de Ciencia e Inovación [SAF2016-75021-R; PID2019-104366RB-C21 to C.V. and T.G., PID2020-117939RB-I00 to A.C., PID2019-107363RB-I00 to F.P.V.]; by CIBERCV, by Instituto de Salud Carlos III [CB/11/00222 to C.V.], by CSIC [PIE201820E104; 2019AEP148 to C.V.]. BES-2017-080184 (to A.B.-B.), funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future” funded by Ministerio de Ciencia e Innovación. A.V.-Z., M.B.-N., A.B.-B. and M.V-E. was awarded with predoctoral fellowships: FPI-UAM, CSIC, FPI and FPU predoctoral contracts, respectively. A.V.-Z. was awarded with a Short-term fellowship from the European Molecular Biology Organization (EMBO).Peer reviewe

    New Cav1.2 Channelopathy with High-Functioning Autism, Affective Disorder, Severe Dental Enamel Defects, a Short QT Interval, and a Novel CACNA1C Loss-of-Function Mutation

    Get PDF
    Complex neuropsychiatric-cardiac syndromes can be genetically determined. For the first time, the authors present a syndromal form of short QT syndrome in a 34-year-old German male patient with extracardiac features with predominant psychiatric manifestation, namely a severe form of secondary high-functioning autism spectrum disorder (ASD), along with affective and psychotic exacerbations, and severe dental enamel defects (with rapid wearing off his teeth) due to a heterozygous loss-of-function mutation in the CACNA1C gene (NM_000719.6: c.2399A > C; p.Lys800Thr). This mutation was found only once in control databases; the mutated lysine is located in the Cav1.2 calcium channel, is highly conserved during evolution, and is predicted to affect protein function by most pathogenicity prediction algorithms. L-type Cav1.2 calcium channels are widely expressed in the brain and heart. In the case presented, electrophysiological studies revealed a prominent reduction in the current amplitude without changes in the gating behavior of the Cav1.2 channel, most likely due to a trafficking defect. Due to the demonstrated loss of function, the p.Lys800Thr variant was finally classified as pathogenic (ACMG class 4 variant) and is likely to cause a newly described Cav1.2 channelopathy
    corecore