167 research outputs found

    On the Transit Potential of the Planet Orbiting iota Draconis

    Get PDF
    Most of the known transiting exoplanets are in short-period orbits, largely due to the bias inherent in detecting planets through the transit technique. However, the eccentricity distribution of the known radial velocity planets results in many of those planets having a non-negligible transit probability. One such case is the massive planet orbiting the giant star iota Draconis, a situation where both the orientation of the planet's eccentric orbit and the size of the host star inflate the transit probability to a much higher value than for a typical hot Jupiter. Here we present a revised fit of the radial velocity data with new measurements and a photometric analysis of the stellar variability. We provide a revised transit probability, an improved transit ephemeris, and discuss the prospects for observing a transit of this planet from both the ground and space.Comment: 6 pages, 7 figures, accepted for publication in ApJ. Radial velocities will be made available in the on-line version and through the NASA Star and Exoplanet Database (NStED). Minor corrections from ApJ proof have been applie

    Revised Orbit and Transit Exclusion for HD 114762b

    Get PDF
    Transiting planets around bright stars have allowed the detailed follow-up and characterization of exoplanets, such as the study of exoplanetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is refining the orbits of the known exoplanets to confirm or rule out both transit signatures and the presence of additional companions. Here we present results for the companion orbiting HD 114762 in an eccentric 84 day orbit. Radial velocity analysis performed on 19 years of Lick Observatory data constrain the uncertainty in the predicted time of mid-transit to ~5 hours, which is less than the predicted one-half day transit duration. We find no evidence of additional companions in this system. New photometric observations with one of our Automated Photoelectric Telescopes (APTs) at Fairborn Observatory taken during a revised transit time for companion b, along with 23 years of nightly automated observations, allow us to rule out on-time central transits to a limit of ~0.001 mag. Early or late central transits are ruled out to a limit of ~0.002 mag, and transits with half the duration of a central transit are ruled out to a limit of ~0.003 mag.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    A New Analysis of the Exoplanet Hosting System HD 6434

    Get PDF
    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a M_p*sin(i) = 0.44 M_J mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ~6 hrs, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9m and 1.0m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry Pipeline, developed to ensure consistent and accurate results. We determine a dispositive null result for the transit of HD 6434b, excluding the full transit to a depth of 0.9% and grazing transit due to impact parameter limitations to a depth of 1.6%Comment: 9 pages, 5 figures, 3 tables, accepted to A

    Refined Properties of the HD 130322 Planetary System

    Get PDF
    Exoplanetary systems closest to the Sun, with the brightest host stars, provide the most favorable opportunities for characterization studies of the host star and their planet(s). The Transit Ephemeris Refinement and Monitoring Survey uses both new radial velocity measurements and photometry in order to greatly improve planetary orbit uncertainties and the fundamental properties of the star, in this case HD 130322. The only companion, HD 130322b, orbits in a relatively circular orbit, e = 0.029 every ~10.7 days. Radial velocity measurements from multiple sources, including 12 unpublished from the Keck I telescope, over the course of ~14 years have reduced the uncertainty in the transit midpoint to ~2 hours. The transit probability for the b-companion is 4.7%, where M_p sin i = 1.15 M_J and a = 0.0925 AU. In this paper, we compile photometric data from the T11 0.8m Automated Photoelectric Telescope at Fairborn Observatory taken over ~14 years, including the constrained transit window, which results in a dispositive null result for both full transit exclusion of HD 130322b to a depth of 0.017 mag and grazing transit exclusion to a depth of ~0.001 mag. Our analysis of the starspot activity via the photometric data reveals a highly accurate stellar rotation period: 26.53 +/-0.70 days. In addition, the brightness of the host with respect to the comparison stars is anti-correlated with the Ca II H and K indices, typical for a young solar-type star.Comment: 9 pages, 4 figures, 4 tables, accepted to Ap

    Improving Transit Predictions of Known Exoplanets with TERMS

    Get PDF
    Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.Comment: 3 pages, 2 figures, to be published in ASP Conf. Proceedings: "Detection and dynamics of transiting exoplanets" 2010, OHP, France (eds.: F. Bouchy, R.F. D{\i}az, C. Moutou

    The HD 192263 system: planetary orbital period and stellar variability disentangled

    Get PDF
    As part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS), we present new radial velocities and photometry of the HD 192263 system. Our analysis of the already available Keck-HIRES and CORALIE radial velocity measurements together with the five new Keck measurements we report in this paper results in improved orbital parameters for the system. We derive constraints on the size and phase location of the transit window for HD 192263b, a Jupiter-mass planet with a period of 24.3587 \pm 0.0022 days. We use 10 years of Automated Photoelectric Telescope (APT) photometry to analyze the stellar variability and search for planetary transits. We find continuing evidence of spot activity with periods near 23.4 days. The shape of the corresponding photometric variations changes over time, giving rise to not one but several Fourier peaks near this value. However, none of these frequencies coincides with the planet's orbital period and thus we find no evidence of star-planet interactions in the system. We attribute the ~23-day variability to stellar rotation. There are also indications of spot variations on longer (8 years) timescales. Finally, we use the photometric data to exclude transits for a planet with the predicted radius of 1.09 RJ, and as small as 0.79 RJ.Comment: 9 pages, 6 tables, 6 figures; accepted to Ap

    Improved Orbital Parameters and Transit Monitoring for HD 156846b

    Get PDF
    HD 156846b is a Jovian planet in a highly eccentric orbit (e = 0.85) with a period of 359.55 days. The pericenter passage at a distance of 0.16 AU is nearly aligned to our line of sight, offering an enhanced transit probability of 5.4% and a potentially rich probe of the dynamics of a cool planetary atmosphere impulsively heated during close approach to a bright star (V = 6.5). We present new radial velocity (RV) and photometric measurements of this star as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). The RV measurements from Keck-HIRES reduce the predicted transit time uncertainty to 20 minutes, an order of magnitude improvement over the ephemeris from the discovery paper. We photometrically monitored a predicted transit window under relatively poor photometric conditions, from which our non-detection does not rule out a transiting geometry. We also present photometry that demonstrates stability at the millimag level over its rotational timescale.Comment: 7 pages, 4 figures, accepted for publication in Ap

    Illness patterns prior to diagnosis of lymphoma : Analysis of UK medical records

    Get PDF
    Background: Increased understanding of the relationship between lymphomas and co-morbidities is likely to provide valuable insights into the natural history of these disorders. Methods: 761 cases with lymphoma (310 diffuse large B-cell [DLBCL]; 226 follicular [FL]; and 225 Hodgkin [HL]) and 761 unaffected age and sex matched controls were recruited and their histories of infection and non-infection diagnoses in primary care records were compared using negative binomial regression. Results: No differences were observed between the infectious illness patterns of DLBCL and FL cases and their matched controls over the 15 years preceding lymphoma diagnosis. A marked excess of infectious illness episodes was recorded for HL cases compared to their controls; evident at least a decade prior to HL diagnosis. For non-infectious consultations an excess of case over control visits emerged 4-6 years before DLBCL and FL diagnosis; no specific co-morbidity associations were found. No case-control differences for non-infectious conditions were apparent for HL. Conclusion: There are substantial variations in patterns of illness prior to diagnosis of the three lymphoma subtypes examined. The excess of infectious diagnoses prior to HL may point to underlying immune abnormality, but there was no suggestion of this for DLBCL and FL where a generalized excess of non-infectious conditions was evident. (C) 2010 Elsevier Ltd. All rights reserved

    Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt

    Get PDF
    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R_* = 0.9058±\pm0.0190 R\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863±\pm0.043 M\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95+/-0.19 AU, which is outside the orbit of all three planets and its asteroid belt.Comment: 5 pages, 3 figures, accepted to Ap

    Hodgkin lymphoma detection and survival : findings from the Haematological Malignancy Research Network

    Get PDF
    Background Hodgkin lymphoma is usually detected in primary care with early signs and symptoms, and is highly treatable with standardised chemotherapy. However, late presentation is associated with poorer outcomes.Aim To investigate the relationship between markers of advanced disease, emergency admission, and survival following a diagnosis of classical Hodgkin lymphoma (CHL).Design & setting The study was set within a sociodemographically representative UK population-based patient cohort of ~4 million, within which all patients were tracked through their care pathways, and linked to national data obtained from Hospital Episode Statistics (HES) and deaths.Method All 971 patients with CHL newly diagnosed between 1 September 2004–31 August 2015 were followed until 18th December 2018.Results The median diagnostic age was 41.5 years (range 0–96 years), 55.2% of the patients were male, 31.2% had stage IV disease, 43.0% had a moderate–high or high risk prognostic score, and 18.7% were admitted via the emergency route prior to diagnosis. The relationship between age and emergency admission was U-shaped: more likely in patients aged <25 years and ≥70 years. Compared to patients admitted via other routes, those presenting as an emergency had more advanced disease and poorer 3-year survival (relative survival 68.4% [95% confidence interval {CI} = 60.3 to 75.2] versus 89.8% [95% CI = 87.0 to 92.0], respectively [P<0.01]). However, after adjusting for clinically important prognostic factors, no difference in survival remained.Conclusion These findings suggest that CHL survival as a whole could be increased by around 4% if the cancer in patients who presented as an emergency had been detected at the same point as in other patients
    corecore