26 research outputs found

    Monitoring a high--amplitude Delta Sct star for 152 days: discovery of 12 additional modes and modulation effects in the light curve of CoRoT 101155310

    Full text link
    The detection of small-amplitude nonradial modes in high-amplitude Delta Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0=CoRoT 101155310 (P=0.1258 d, V=13.4) ensured from space by the CoRoT (Convection, Rotation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 micromag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. In addition to the fundamental radial mode f1=7.949 c/d with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at +/-0.193 c/d centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region.Comment: 10 pages, 6 figures, Tables 1 and 2 available at CDS after publication. Accepted for publication in Astronomy and Astrophysic

    What CoRoT tells us about Scuti stars: Existence of a regular pattern and seismic indices to characterize stars

    Get PDF
    Inspired by the so appealing example of red giants, where going from a handful of stars to thousands revealed the structure of the eigenspectrum, we inspected a large homogeneous set of around 1860 {\delta} Scuti stars observed with CoRoT. This unique data set reveals a common regular pattern which appears to be in agreement with island modes featured by theoretical non-perturbative treatments of fast rotation. The comparison of these data with models and linear stability calculations suggests that spectra can be fruitfully characterized to first order by a few parameters which might play the role of seismic indices for {\delta} Scuti stars, as {\Delta \nu} and {\nu_{max}} do for red giants. The existence of this pattern offers an observational support for guiding further theoretical works on fast rotation. It also provides a framework for further investigation of the observational material collected by CoRoT and Kepler. Finally, it sketches out the perspective of using {\delta} Scuti stars pulsations for ensemble asteroseismology.The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by the Centre Na- tional d’Etudes Spatiales (CNES), with contributions from Aus- tria, Belgium, Brazil, the European Space Agency (RSSD and Science Programme), Germany and Spain. We ac- knowledge the support from the EC Project SpaceInn (FP7- SPACE-2012-312844). EM, KB, RS and DR acknowledge the support from the Programme de Physique Stellaire (PNPS). AGH acknowledges support from Fundação para a Ciên- cia e a Tecnologia (FCT, Portugal) through the fellowship SFRH / BPD / 80619 / 2011. JCS acknowledges funding support from Spanish public funds for research under project ESP201 5- 65712-C5-5-R (MINECO / FEDER), and under Research Fellow- ship program “Ramón y Cajal” (MINECO / FEDER

    Automated Classification of variable stars: Application to the OGLE and CoRoT databases.

    No full text
    The rapid developments in astronomical instrumentation and data acquisit ion techniques during the last decades, have been creating increasingly large volumes of data. The use of automated space or ground-based telesc opes in combination with high resolution CCD (Charge Coupled Device) ima gers, allows to accurately survey the sky in a very fast and efficient w ay. It seems that many of the currently used data analysis techniques ca nnot keep up with the exponentially growing accumulation rate of new dat a. In fact, we risk that much of the potential science, present in the d ata, is left unexplored. The way to reduce this discrepancy is the use o f efficient automated data-mining techniques. Currently, big efforts are undertaken in this direction, but a lot still remains to be done and in vestigated. The use of automated techniques, even very sophisticated one s, does not make the humain brain obsolete, in the sense that the real s cience is still done by a scientist. Both the development of the techniq ues, and the interpretation of the results produced, requires domain kno wledge. The real benefit of automated methods is their ability to perfor m certain tasks much faster than a human can ever do. Some tasks can onl y be done with CPU power. An important, and commonly used data-mining technique, is the automated classification of `objects' into a number of pre-defined classes. This thesis describes the application of these so called `supervised cla ssification' techniques to the field of stellar variability, and in part icular, to light curves of variable stars. The methodology was developed in preparation of the CoRoT space mission (Convection, Rotation and pla netary Transits), launched successfully on 27 December 2006. The main sc ientific goals of this mission are asteroseismology and the search for e xoplanets. A large database of high quality light curves is produced as a by-product of the exoplanet search. We have applied our methods to the first four fields observed by CoRoT, in total about 40000 light curves. The development of the methods was done before any CoRoT data were avai lable. We used the OGLE database (Optical Gravitational Lensing Experime nt) to evaluate the performance of the classifiers, showing at the same time their flexibility: they can be applied to databases of light curves produced by completely different instruments and with a variety of diff erent characteristics, usually with only minor adaptations. This work contains the methodology developed and its application to the OGLE and CoRoT exoplanet databases.status: publishe

    Stellar Flares Observed in Long-cadence Data from the Kepler Mission

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. We aim to perform a statistical study of stellar flares observed by Kepler. We want to study the flare amplitude, duration, energy, and occurrence rates, and how they are related to the spectral type and rotation period. To that end, we have developed an automated flare detection and characterization algorithm. We have harvested the stellar parameters from the Kepler input catalog and the rotation periods from McQuillan et al. We find several new candidate A stars showing flaring activity. Moreover, we find 653 giants with flares. From the statistical distribution of flare properties, we find that the flare amplitude distribution has a similar behavior between F+G types and K+M types. The flare duration and flare energy seem to be grouped between G+K+M types versus F types and giants. We also detect a tail of stars with high flare occurrence rates across all spectral types (but most prominent in the late spectral types), and this is compatible with the existence of "flare stars." Finally, we have found a strong correlation of the flare occurrence rate and the flare amplitude with the stellar rotation period: a quickly rotating star is more likely to flare often and has a higher chance of generating large flares.status: publishe

    IRAS 19135+3937: an SRd variable as interacting binary surrounded by a circumbinary disc

    No full text
    Semi-regular (SR) variables are not a homogeneous class and their variability is often explained due to pulsations and/or binarity. This study focuses on IRAS 19135+3937, an SRd variable with an infrared excess indicative of a dusty disc. A time series of high-resolution spectra, UBV photometry as well as a very accurate light curve obtained by the Kepler satellite, allowed us to study the object in unprecedented detail. We discovered it to be a binary with a period of 127 d. The primary has a low surface gravity and an atmosphere depleted in refractory elements. This combination of properties unambiguously places IRAS 19135+3937 in the subclass of post-asymptotic giant branch stars with dusty discs. We show that the light variations in this object cannot be due to pulsations, but are likely caused by the obscuration of the primary by the circumbinary disc during orbital motion. Furthermore, we argue that the double-peaked Fe emission lines provide evidence for the existence of a gaseous circumbinary Keplerian disc inside the dusty disc. A secondary set of absorption lines has been detected near light minimum, which we attribute to the reflected spectrum of the primary on the disc wall, which segregates due to the different Doppler shift. This corroborates the recent finding that reflection in the optical by this type of discs is very efficient. The system also shows a variable H α profile indicating a collimated outflow originating around the companion. IRAS 19135+3937 thus encompasses all the major emergent trends about evolved disc systems, that will eventually help to place these objects in the evolutionary context.Accepted to MNRASstatus: publishe

    Kepler's first view of O-star variability: K2 data of five O stars in Campaign 0 as a proof of concept for O-star asteroseismology

    Get PDF
    We present high-precision photometric light curves of five O-type stars observed with the refurbished Kepler satellite during its Campaign 0. For one of the stars, we also assembled high-resolution ground-based spectroscopy with the HERMES spectrograph attached to the 1.2 m Mercator telescope. The stars EPIC 202060097 (O9.5V) and EPIC 202060098 (O7V) exhibit monoperiodic variability due to rotational modulation with an amplitude of 5.6 and 9.3 mmag and a rotation period of 2.63 and 5.03 d, respectively. EPIC 202060091 (O9V) and EPIC 202060093 (O9V:pe) reveal variability at low frequency but the cause is unclear. EPIC 202060092 (O9V:p) is discovered to be a spectroscopic binary with at least one multiperiodic β Cep-type pulsator whose detected mode frequencies occur in the range [0.11, 6.99] d-1 and have amplitudes between 0.8 and 2.0 mmag. Its pulsation spectrum is shown to be fully compatible with the ones predicted by core-hydrogen burning O-star models. Despite the short duration of some 33 d and the limited data quality with a precision near 100 μmag of these first K2 data, the diversity of possible causes for O-star variability already revealed from campaigns of similar duration by the MOST and CoRoT satellites is confirmed with Kepler. We provide an overview of O-star space photometry and give arguments why future K2 monitoring during Campaigns 11 and 13 at short cadence, accompanied by time-resolved high-precision high-resolution spectroscopy, opens up the possibility of in-depth O-star seismology.13 pages, 10 figures, 3 tables. Accepted for publication in MNRAS. High-quality figures will be available in the journal version of the paperstatus: publishe

    Technical note: Reanalysis of Aura MLS chemical observations

    Get PDF
    This paper presents a reanalysis of the atmospheric chemical composition from the upper troposphere to the lower mesosphere from August 2004 to December 2017. This reanalysis is produced by the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by the chemical observations from the Microwave Limb Sounder (MLS) on board the Aura satellite. BASCOE is based on the ensemble Kalman filter (EnKF) method and includes a chemical transport model driven by the winds and temperature from the ERA-Interim meteorological reanalysis. The model resolution is 3.75∘ in longitude, 2.5∘ in latitude and 37 vertical levels from the surface to 0.1 hPa with 25 levels above 100 hPa. The outputs are provided every 6 h. This reanalysis is called BRAM2 for BASCOE Reanalysis of Aura MLS, version 2. Vertical profiles of eight species from MLS version 4 are assimilated and are evaluated in this paper: ozone (O3), water vapour (H2O), nitrous oxide (N2O), nitric acid (HNO3), hydrogen chloride (HCl), chlorine oxide (ClO), methyl chloride (CH3Cl) and carbon monoxide (CO). They are evaluated using independent observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and N2O observations from a different MLS radiometer than the one used to deliver the standard product and ozonesondes. The evaluation is carried out in four regions of interest where only selected species are evaluated. These regions are (1) the lower-stratospheric polar vortex where O3, H2O, N2O, HNO3, HCl and ClO are evaluated; (2) the upper-stratospheric–lower-mesospheric polar vortex where H2O, N2O, HNO3 and CO are evaluated; (3) the upper troposphere–lower stratosphere (UTLS) where O3, H2O, CO and CH3Cl are evaluated; and (4) the middle stratosphere where O3, H2O, N2O, HNO3, HCl, ClO and CH3Cl are evaluated. In general BRAM2 reproduces MLS observations within their uncertainties and agrees well with independent observations, with several limitations discussed in this paper (see the summary in Sect. 5.5). In particular, ozone is not assimilated at altitudes above (i.e. pressures lower than) 4 hPa due to a model bias that cannot be corrected by the assimilation. MLS ozone profiles display unphysical oscillations in the tropical UTLS, which are corrected by the assimilation, allowing a good agreement with ozonesondes. Moreover, in the upper troposphere, comparison of BRAM2 with MLS and independent observations suggests a positive bias in MLS O3 and a negative bias in MLS H2O. The reanalysis also reveals a drift in MLS N2O against independent observations, which highlights the potential use of BRAM2 to estimate biases between instruments. BRAM2 is publicly available and will be extended to assimilate MLS observations after 2017

    Detecting non-uniform period spacings in the Kepler photometry of gamma Doradus stars: methodology and case studies

    Get PDF
    Context. The analysis of stellar oscillations is one of the most reliable ways to probe stellar interiors. Recent space missions such as Kepler have provided us with an opportunity to study these oscillations with unprecedented detail. For many multi-periodic pulsators such as gamma Doradus stars, this led to the detection of dozens to hundreds of oscillation frequencies that could not be found from ground-based observations. Aims. We aim to detect non-uniform period spacings in the Fourier spectra of a sample of gamma Doradus stars observed by Kepler. Such detection is complicated by both the large number of significant frequencies in the space photometry and by overlapping non-equidistant rotationally split multiplets. Methods. Guided by theoretical properties of gravity-mode oscillation of gamma Doradus stars, we developed a period-spacing detection method and applied it to Kepler observations of a few stars, after having tested the performance from simulations. Results. The application of the technique resulted in the clear detection of non-uniform period spacing series for three out of the five treated Kepler targets. Disadvantages of the technique are also discussed, and include the disability to distinguish between different values of the spherical degree and azimuthal order of the oscillation modes without additional theoretical modelling. Conclusions. Despite the shortcomings, the method is shown to allow solid detections of period spacings for gamma Doradus stars, which will allow future asteroseismic analyses of these stars.10 pages, 13 figures, 2 tables. Accepted for publication in Astronomy & Astrophysicsstatus: publishe
    corecore