178 research outputs found
The Rules of Human T Cell Fate in vivo.
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset
Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk
peer-reviewedA total of twelve strains of lactococci were isolated from grass and vegetables (baby corn and fresh green peas). Ten of the isolates were classified as Lactococcus lactis subsp. lactis and two as Lactococcus lactis subsp. cremoris based on 16S rDNA sequencing. Most of the plant-derived strains were capable of metabolising a wide range of carbohydrates in that they fermented D-mannitol, amygdalin, potassium gluconate, l-arabinose, d-xylose, sucrose and gentibiose. None of the dairy control strains (i.e. L. lactis subsp. cremoris HP, L. lactis subsp. lactis IL1403 and Lactococcus lactis 303) were able to utilize any of these carbohydrates. The technological potential of the isolates as flavour-producing lactococci was evaluated by analysing their growth in milk and their ability to produce volatile compounds using solid phase micro-extraction of the headspace coupled to gas chromatography–mass spectrometry (SPME GC–MS). Principal component analysis (PCA) of the volatile compounds clearly separated the dairy strains from the plant derived strains, with higher levels of most flavour rich compounds. The flavour compounds produced by the plant isolates among others included; fatty acids such as 2- and 3-methylbutanoic acids, and hexanoic acid, several esters (e.g. butyl acetate and ethyl butanoate) and ketones (e.g. acetoin, diacetyl and 2-heptanone), all of which have been associated with desirable and more mature flavours in cheese. As such the production of a larger number of volatile compounds is a distinguishing feature of plant-derived lactococci and might be a desirable trait for the production of dairy products with enhanced flavour and/or aroma
Modulation of GLO1 expression affects malignant properties of cells
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed
Enrolment in Ethiopia’s Community Based Health Insurance Scheme
In June 2011, the Government of Ethiopia rolled out a pilot Community Based Health Insurance (CBHI) scheme. This paper assesses scheme uptake. We examine whether the scheme is inclusive, the role of health status in inducing enrolment and the effect of the quality of health care on uptake. By December 2012, scheme uptake had reached an impressive 45.5 percent of target households. We find that a household’s socioeconomic status does not inhibit uptake and the most food-insecure households are substantially more likely to enrol. Recent illnesses, incidence of chronic diseases and self-a
Ethyl pyruvate combats human leukemia cells but spares normal blood cells
Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry,
enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors
Transformation of SOX9(+) cells by Pten deletion synergizes with steatotic liver injury to drive development of hepatocellular and cholangiocarcinoma
SOX9 (Sex-determining region Y Box 9) is a well-characterized transcription factor that is a marker for progenitor cells in various tissues. In the liver, cells delineated by SOX9 are responsible for regenerating liver parenchyma when cell proliferation is impaired following chronic injury. However, whether these SOX9(+) cells play a role in liver carcinogenesis has not been fully understood, although high SOX9 expression has been linked to poor survival outcome in liver cancer patients. To address this question, we developed a liver cancer mouse model (Pten(loxP/loxP); Sox9-Cre(ERT+); R26R(YFP)) where tumor suppressor Pten (phosphatase and tensin homolog deleted on chromosome ten) is deleted in SOX9(+) cells following tamoxifen injection. In this paper, we employ lineage-tracing to demonstrate the tumorigenicity potential of the Pten(-), SOX9(+) cells. We show that these cells are capable of giving rise to mixed-lineage tumors that manifest features of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA). Our results suggest that PTEN loss induces the transformation of SOX9(+) cells. We further show that to activate these transformed SOX9(+) cells, the presence of liver injury is crucial. Liver injury, induced by hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or high-fat diet (HFD), substantially increases tumor incidence and accelerates liver carcinogenesis from SOX9(+) cells in Pten null mice but not in control mice. We further examine the mechanisms underlying tumor formation in this model to show that concurrent with the induction of niche signal (i.e., Wnt signaling), liver injury significantly stimulates the expansion of tumor-initiating cells (TICs). Together, these data show that (1) SOX9(+) cells have the potential to become TICs following the primary transformation (i.e. Pten deletion) and that (2) liver injury is necessary for promoting the activation and proliferation of transformed SOX9(+) cells, resulting in the genesis of mixed-lineage liver tumors
Modulation of GLO1 expression affects malignant properties of cells
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed
Coping with shocks in rural Ethiopia
Based on household survey data and event history interviews undertaken in a highly shock prone country, this paper investigates which shocks trigger which coping responses and why? We find clear differences in terms of coping strategies across shock types. The two relatively covariate shocks, that is, economic and natural shocks are more likely to trigger reductions in savings and in food consumption while the sale of assets and borrowing is less common. Coping with relatively idiosyncratic health shocks is met by reductions in savings, asset sales and especially a far greater reliance on borrowing as compared to other shocks. Reductions in food consumption, a prominent response in the case of natural and economic shocks is notably absent in the case of health shocks. Across all shock types, households do not rely on gifts from family and friends or on enhancing their labour supply as coping approaches. The relative insensitivity of food consumption to health shocks based on the shocks-coping analysis presented here is consistent with existing work which examines consumption insurance. However, our analysis leads to a different interpretation. We argue that this insensitivity should not be viewed as insurability of food consumption against health shocks but rather as an indication that a reduction in food consumption is not a viable coping response to a health shock as it does not provide cash to meet health care needs.ASC – Publicaties niet-programma gebonde
Characterization of the major formamidopyrimidine–DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats
The ability to repair DNA damage is likely to play an important role in the survival of facultative intracellular parasites because they are exposed to high levels of reactive oxygen species and nitrogen intermediates inside phagocytes. Correcting oxidative damage in purines and pyrimidines is the primary function of the enzymes formamidopyrimidine (faPy)–DNA glycosylase (Fpg) and endonuclease VIII (Nei) of the base excision repair pathway, respectively. Four gene homologs, belonging to the fpg/nei family, have been identified in Mycobacterium tuberculosis H37Rv. The recombinant protein encoded by M. tuberculosis Rv2924c, termed Mtb-Fpg1, was overexpressed, purified and biochemically characterized. The enzyme removed faPy and 5-hydroxycytosine lesions, as well as 8-oxo-7,8-dihydroguanine (8oxoG) opposite to C, T and G. Mtb-Fpg1 thus exhibited substrate specificities typical for Fpg enzymes. Although Mtb-fpg1 showed nearly complete nucleotide sequence conservation in 32 M. tuberculosis isolates, the region upstream of Mtb-fpg1 in these strains contained tandem repeat motifs of variable length. A relationship between repeat length and Mtb-fpg1 expression level was demonstrated in M. tuberculosis strains, indicating that an increased length of the tandem repeats positively influenced the expression levels of Mtb-fpg1. This is the first example of such a tandem repeat region of variable length being linked to the expression level of a bacterial gene
- …