146 research outputs found

    The role of cytology in patients undergoing pressurized intraperitoneal aerosol chemotherapy (PIPAC) treatment for peritoneal carcinomatosis.

    Get PDF
    Cytology of ascites or peritoneal washing is a routine part of staging of peritoneal metastases (PM). We aim to determine value of cytology in patients undergoing pressurized intraperitoneal aerosol chemotherapy (PIPAC). Single-center retrospective cohort study included consecutive patients having PIPAC for PM of different primary between January 2015 and January 2020. A total of 75 patients (median 63 years (IQR 51-70), 67 % female) underwent a total of 144 PIPAC. At PIPAC 1 59 % patients had positive and 41 % patients had negative cytology. Patients with negative and positive cytology only differed in terms of symptoms of ascites (16% vs. 39 % respectively, p=0.04), median ascites volume (100 vs. 0 mL, p=0.01) and median PCI (9 vs. 19, p<0.01). Among 20 patients who completed 3 PIPACs (per protocol), cytology changed in one from positive to negative, and in two from negative to positive. Median overall survival was 30.9 months in the per protocol group and 12.9 months in patients having <3 PIPACs (=0.519). Positive cytology under PIPAC treatment is more frequently encountered in patients with higher PCI and symptomatic ascites. Cytoversion was rarely observed and cytology status had no impact on treatment decisions in this cohort

    Determinación de sulfuros en cementos por potenciometría con un electrodo selectivo de sulfuros

    Get PDF
    A procedure for the determination of sulphides attackable by HCI (1 :3) in cements by means of a potentiometric determination with a selective electrodo of sulphides, is proposed.Se propone un método para la determinación de sulfuros, basado en el ataque con HCI (1:3), destilación y posterior medida potenciométrica con un electrodo selectivo de sulfuros

    Identification of Candidate Susceptibility and Resistance Genes of Mice Infected with Streptococcus suis Type 2

    Get PDF
    Streptococcus suis type 2 (SS2) is an important swine pathogen and zoonosis agent. A/J mice are significantly more susceptible than C57BL/6 (B6) mice to SS2 infection, but the genetic basis is largely unknown. Here, alterations in gene expression in SS2 (strain HA9801)-infected mice were identified using Illumina mouse BeadChips. Microarray analysis revealed 3,692 genes differentially expressed in peritoneal macrophages between A/J and B6 mice due to SS2 infection. Between SS2-infected A/J and control A/J mice, 2646 genes were differentially expressed (1469 upregulated; 1177 downregulated). Between SS2-infected B6 and control B6 mice, 1449 genes were differentially expressed (778 upregulated; 671 downregulated). These genes were analyzed for significant Gene Ontology (GO) categories and signaling pathways using the Kyoto Encylopedia of Genes and Genomes (KEGG) database to generate a signaling network. Upregulated genes in A/J and B6 mice were related to response to bacteria, immune response, positive regulation of B cell receptor signaling pathway, type I interferon biosynthesis, defense and inflammatory responses. Additionally, upregulated genes in SS2-infected B6 mice were involved in antigen processing and presentation of exogenous peptides, peptide antigen stabilization, lymphocyte differentiation regulation, positive regulation of monocyte differentiation, antigen receptor-mediated signaling pathway and positive regulation of phagocytosis. Downregulated genes in SS2-infected B6 mice played roles in glycolysis, carbohydrate metabolic process, amino acid metabolism, behavior and muscle regulation. Microarray results were verified by quantitative real-time PCR (qRT-PCR) of 14 representative deregulated genes. Four genes differentially expressed between SS2-infected A/J and B6 mice, toll-like receptor 2 (Tlr2), tumor necrosis factor (Tnf), matrix metalloproteinase 9 (Mmp9) and pentraxin 3 (Ptx3), were previously implicated in the response to S. suis infection. This study identified candidate genes that may influence susceptibility or resistance to SS2 infection in A/J and B6 mice, providing further validation of these models and contributing to understanding of S. suis pathogenic mechanisms

    Human Pentraxin 3 Binds to the Complement Regulator C4b-Binding Protein

    Get PDF
    The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP). A PTX3-binding site was identified within short consensus repeats 1–3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage

    Lack of the Long Pentraxin PTX3 Promotes Autoimmune Lung Disease but not Glomerulonephritis in Murine Systemic Lupus Erythematosus

    Get PDF
    The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases

    Effect of cadence on locomotor–respiratory coupling during upper-body exercise

    Get PDF
    Introduction: Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor–respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Methods: Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min−1) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. Results: The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min−1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min−1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, (Formula presented.) and fC were higher at 90 rev min−1 (p < 0.05) relative to 70 and 50 rev min−1 ((Formula presented.) 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min−1; fC 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min−1), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Conclusion: Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs

    Cigarette smoke induces PTX3 expression in pulmonary veins of mice in an IL-1 dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and structural alterations of the airways, lung parenchyma and pulmonary vasculature. Since Pentraxin-3 (PTX3) is a tuner of inflammatory responses and is produced by endothelial and inflammatory cells upon stimuli such as interleukin-1β (IL-1β), we hypothesized that PTX3 is involved in COPD pathogenesis.</p> <p>Methods and Results</p> <p>We evaluated whether cigarette smoke (CS) triggers pulmonary and systemic PTX3 expression <it>in vivo </it>in a murine model of COPD. Using immunohistochemical (IHC) staining, we observed PTX3 expression in endothelial cells of lung venules and veins but not in lung arteries, airways and parenchyma. Moreover, ELISA on lung homogenates and semi-quantitative scoring of IHC-stained sections revealed a significant upregulation of PTX3 upon subacute and chronic CS exposure. Interestingly, PTX3 expression was not enhanced upon subacute CS exposure in IL-1RI KO mice, suggesting that the IL-1 pathway is implicated in CS-induced expression of vascular PTX3. Serum PTX3 levels increased rapidly but transiently after acute CS exposure.</p> <p>To elucidate the functional role of PTX3 in CS-induced responses, we examined pulmonary inflammation, protease/antiprotease balance, emphysema and body weight changes in WT and Ptx3 KO mice. CS-induced pulmonary inflammation, peribronchial lymphoid aggregates, increase in MMP-12/TIMP-1 mRNA ratio, emphysema and failure to gain weight were not significantly different in Ptx3 KO mice compared to WT mice. In addition, Ptx3 deficiency did not affect the CS-induced alterations in the pulmonary (mRNA and protein) expression of VEGF-A and FGF-2, which are crucial regulators of angiogenesis.</p> <p>Conclusions</p> <p>CS increases pulmonary PTX3 expression in an IL-1 dependent manner. However, our results suggest that either PTX3 is not critical in CS-induced pulmonary inflammation, emphysema and body weight changes, or that its role can be fulfilled by other mediators with overlapping activities.</p

    Trackways Produced by Lungfish During Terrestrial Locomotion

    Get PDF
    Some primarily aquatic vertebrates make brief forays onto land, creating traces as they do. A lack of studies on aquatic trackmakers raises the possibility that such traces may be ignored or misidentified in the fossil record. Several terrestrial Actinopterygian and Sarcopterygian species have previously been proposed as possible models for ancestral tetrapod locomotion, despite extant fishes being quite distinct from Devonian fishes, both morphologically and phylogenetically. Although locomotion has been well-studied in some of these taxa, trackway production has not. We recorded terrestrial locomotion of a 35 cm African lungfish (Protopterus annectens; Dipnoi: Sarcopterygii) on compliant sediment. Terrestrial movement in the lungfish is accomplished by planting the head and then pivoting the trunk. Impressions are formed where the head impacts the substrate, while the body and fins produce few traces. The head leaves a series of alternating left-right impressions, where each impact can appear as two separate semi-circular impressions created by the upper and lower jaws, bearing some similarity to fossil traces interpreted as footprints. Further studies of trackways of extant terrestrial fishes are necessary to understand the behavioural repertoire that may be represented in the fossil track record

    Pentraxin 3 (PTX3) Expression in Allergic Asthmatic Airways: Role in Airway Smooth Muscle Migration and Chemokine Production

    Get PDF
    Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3)H-thymidine incorporation, cell count and Boyden chamber assays.PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma
    corecore