125 research outputs found

    Immune sensitization of equine bronchus: glutathione, IL-1β expression and tissue responsiveness

    Get PDF
    BACKGROUND: Increasing clinical epidemiological and experimental evidence indicates that excess of production of reactive oxygen free radicals (ROS) induced by an oxidative stress is involved in the pathogenesis of a number of human airway disorders, as well as equine recurrent airway obstruction. Free-radicals modulate the activation of transcription factors, such as nuclear factor-(NF)-κB and activator protein (AP)-1, in several different cells. This activation leads to expression of many pro-inflammatory cytokines, including interleukin (IL)-1β. We have hypothesized that equine airway sensitization might induce an oxidative stress and increase the ROS production, which in turn might enhance a production of IL-1β and airway hyperresponsiveness. METHODS: We have examined the effect of passive sensitization on IL-1β mRNA expression and electrical field stimulation (EFS)-induced contraction in equine isolated bronchi, and the potential interference of reduced-glutathione (GSH), an antioxidant, with these responses. Bronchi passively sensitized with serum from animals suffering from heaves and having high total level of IgE, and control tissues, either pretreated or not with GSH (100 μM), were used to quantify IL-1β mRNA. Other tissues were used to study the effect of EFS (3–10–25 Hz). RESULTS: Mean IL-1β mRNA expression was higher in passively sensitized than in control rings. GSH significantly (p < 0.05) reduced the IL-1β mRNA expression only in passively sensitized bronchi. ELF induced a frequency-dependent contraction in both non-sensitized and passively sensitized tissues, with a significantly greater response always observed in sensitized tissues. GSH did not modify the EFS-induced contraction in non-sensitized bronchi, but significantly (p < 0.05) decreased it in passively sensitized tissues. CONCLUSION: Our data indicate that the passive sensitization of equine bronchi induces inflammation and hyperresponsiveness. These effects might be due to an oxidative stress because a pretreatment with GSH decreased the increased IL-1β mRNA expression and responsiveness to EFS of passively sensitized bronchi

    Fish Is Food - The FAO’s Fish Price Index

    Get PDF
    World food prices hit an all-time high in February 2011 and are still almost two and a half times those of 2000. Although three billion people worldwide use seafood as a key source of animal protein, the Food and Agriculture Organization (FAO) of the United Nations–which compiles prices for other major food categories–has not tracked seafood prices. We fill this gap by developing an index of global seafood prices that can help to understand food crises and may assist in averting them. The fish price index (FPI) relies on trade statistics because seafood is heavily traded internationally, exposing non-traded seafood to price competition from imports and exports. Easily updated trade data can thus proxy for domestic seafood prices that are difficult to observe in many regions and costly to update with global coverage. Calculations of the extent of price competition in different countries support the plausibility of reliance on trade data. Overall, the FPI shows less volatility and fewer price spikes than other food price indices including oils, cereals, and dairy. The FPI generally reflects seafood scarcity, but it can also be separated into indices by production technology, fish species, or region. Splitting FPI into capture fisheries and aquaculture suggests increased scarcity of capture fishery resources in recent years, but also growth in aquaculture that is keeping pace with demand. Regionally, seafood price volatility varies, and some prices are negatively correlated. These patterns hint that regional supply shocks are consequential for seafood prices in spite of the high degree of seafood tradability

    The long-run behaviour of the terms of trade between primary commodities and manufactures : a panel data approach

    Get PDF
    This paper examines the Prebisch and Singer hypothesis using a panel of twenty-four commodity prices from 1900 to 2010. The modelling approach stems from the need to meet two key concerns: (i) the presence of cross-sectional dependence among commodity prices; and (ii) the identification of potential structural breaks. To address these concerns, the Hadri and Rao (Oxf Bull Econ Stat 70:245–269, 2008) test is employed. The findings suggest that all commodity prices exhibit a structural break whose location differs across series, and that support for the Prebisch and Singer hypothesis is mixed. Once the breaks are removed from the underlying series, the persistence of commodity price shocks is shorter than that obtained in other studies using alternative methodologies.info:eu-repo/semantics/publishedVersio

    A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter

    Get PDF
    A CpG island (CGI) lies at the 5′ end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start

    Cross-Location Analysis of the Impact of Household Socioeconomic Status on Participation in Urban and Peri-Urban Agriculture in West Africa

    Get PDF
    This study explores the relation between household socioeconomic status (SES) and participation in urban and periurban agriculture (UPA) in three West African cities. We used a structured questionnaire to survey 700 randomly selected households: 250 in Kano, Nigeria, 250 in Bobo Dioulasso, Burkina Faso, and 200 in Sikasso, Mali. Multiple correspondence analysis was applied on household asset variables to create an index of assets which was used as a proxy for household SES. The results showed no significant differences in households’ rate of participation in UPA across socioeconomic groups. Participation in UPA was rather significantly (P < 0.001) and positively related to household size. Interestingly, the analysis revealed that field crop cultivation and gardening were more common among households in the low and medium SES groups while those in the high SES group were more likely to keep livestock

    The Influence of cis-Regulatory Elements on DNA Methylation Fidelity

    Get PDF
    It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio
    corecore