1,025 research outputs found

    A Monolithically Fabricated Combinatorial Mixer for Microchip-Based High-Throughput Cell Culturing Assays

    Get PDF
    We present an integrated method to fabricate 3- D microfluidic networks and fabricated the first on-chip cell culture device with an integrated combinatorial mixer. The combinatorial mixer is designed for screening the combinatorial effects of different compounds on cells. The monolithic fabrication method with parylene C as the basic structural material allows us to avoid wafer bonding and achieves precise alignment between microfluidic channels. As a proof-of-concept, we fabricated a device with a three-input combinatorial mixer and demonstrated that the mixer can produce all the possible combinations. Also, we demonstrated the ability to culture cells on-chip and performed a simple cell assay on-chip using trypan blue to stain dead cells

    Attenuation of Cellular Inflammation Using Glucocorticoid-Functionalized Copolymers

    Get PDF
    This work has demonstrated the functionalization of an amphiphilic diblock copolymer, comprised of polyethylene oxide-polymethyl methacrylate (PEO-PMMA), as well as a triblock copolymer comprised of polymethyloxazoline-polydimethylsiloxane-polymethyloxazoline(PMOXA-PDMS-PM OXA) with the dexamethasone (Dex) glucocorticoid anti-inflammatory. Interfacial deposition of the copolymer and the Dex molecules and subsequent transfer of the hybrid materials to solid substrates were characterized to evaluate the potential of utilizing this composite material as a suppressor of cyto-inflammation to enhance implant biocompatibility. Given the extremely thin dimensions of the film (~4nm), this material would have negligible impact upon the size of the coated device to preclude biological stress. The composite films were interfaced with the RAW264.7 murine macrophages which served as a model cell line for the evaluation of nuclear factor-kappaB (NF-KB)-induced production of a host of inflammatory cytokines including interleukin-6, interleukin-12, tumor necrosis factor-alpha (TNFalpha), as well as the inducible nitric oxide synthase signaling factor which is known to be involved with stress-related processes such as neuronal damage. Lipopolysaccharide or LPS is a component of bacterial membranes that elicits cellular stress following application to RAW cell cultures. Following the induced stress response, significant reductions in the expression of genes associated with the aforementioned cytokines and signaling molecules indicated that macrophages in direct contact with the functionalized copolymer were able to collect Dex that was released from within the polymer network to attenuate cyto-inflammation mechanisms. This composite membrane represents a medically-relevant technology to promote chronic implant functionality and preclusion of bio-fouling

    Exploration of the Security and Usability of the FIDO2 Authentication Protocol

    Get PDF
    Gemstone Team PASSFast IDentity Online (FIDO) is a passwordless authentication protocol for the web that leverages public key cryptography and trusted devices to avoid shared secrets on servers. The current version of FIDO, FIDO2, has become widespread and is directly integrated into popular systems such as Windows Hello and Android OS. This thesis details two contributions to the advancement of FIDO2. The first is a modification to the protocol which uses Trusted Execution Environments to resolve security vulnerabilities in the Client To Authenticator Protocol Version 2 (CTAP2), which is a component of FIDO2. It is formally demonstrated that this modification provides a stronger security assumption than CTAP2. The second contribution is an outline of procedures and resources for future researchers to carry out a study of the usability of FIDO2 authenticators via a within-subjects experiment. In the study, subjects register an account on a custom web app using both passwords and FIDO2 credentials. The web app collects metrics about user behavior such as timing information for authentication sessions. Over the course of a week, subjects log in to the same web app every day using both authentication methods. Subjects complete entrance and exit surveys based on the System Usability Scale (SUS) according to their experiences. The surveys and user metrics would then be analyzed to determine whether users perceive FIDO2 as more usable than passwords

    Interplay between local moment and itinerant magnetism in the layered metallic antiferromagnet TaFe1.14_{1.14}Te3_3

    Full text link
    Two-dimensional (2D) antiferromagnets have garnered considerable interest for the next generation of functional spintronics. However, many available bulk materials from which 2D antiferromagnets are isolated are limited by their sensitivity to air, low ordering temperatures, and insulating transport properties. TaFe1+y_{1+y}Te3_3 offers unique opportunities to address these challenges with increased air stability, metallic transport properties, and robust antiferromagnetic order. Here, we synthesize TaFe1+y_{1+y}Te3_3 (yy = 0.14), identify its structural, magnetic, and electronic properties, and elucidate the relationships between them. Axial-dependent high-field magnetization measurements on TaFe1.14_{1.14}Te3_3 reveal saturation magnetic fields ranging between 27-30 T with a saturation magnetic moment of 2.05-2.12 μB\mu_B. Magnetotransport measurements confirm TaFe1.14_{1.14}Te3_3 is metallic with strong coupling between magnetic order and electronic transport. Angle-resolved photoemission spectroscopy measurements across the magnetic transition uncover a complex interplay between itinerant electrons and local magnetic moments that drives the magnetic transition. We further demonstrate the ability to isolate few-layer sheets of TaFe1.14_{1.14}Te3_3 through mechanical exfoliation, establishing TaFe1.14_{1.14}Te3_3 as a potential platform for 2D spintronics based on metallic layered antiferromagnets.Comment: 30 pages, 5 main figures, 23 supporting figures, and 3 supporting table

    Aligning assessment with the needs of work-integrated learning: the challenges of authentic assessment in a complex context

    Get PDF
    Work-integrated learning (WIL) is a feature of university courses, both in professional areas, where it is commonplace, but also across many different disciplines. Assessment of WIL can be complex as it involves parties and settings external to the university, and it can be problematic because of difficulties in aligning learning activities during placements with what is or can be assessed by the university. This paper explores the relationship between students’ placement experiences and accompanying assessments in contexts where activities are tightly coupled with the curriculum, and in those where it is not. It draws on a qualitative analysis of student interviews and drawings by the interviewees of their WIL experiences, supplemented with analysis of unit guides. Our findings highlight that students’ perceptions of authenticity of assessment were undermined by misalignments between the student, university and industry. Assessment authenticity was perceived by students as based on alignment between their current and future selves in the assessment process, involvement of industry supervisors and relevance of placement activities to assessment activities. The paper discusses the complexity of coordination of educational activities with external partners, especially when one party drives assessment. It then suggests a reframing of WIL assessment to promote alignment and authenticity

    Association Between Acid-Sensing Ion Channel 3 Gene Variants and Balance Impairment in People With Mild Traumatic Brain Injury

    Get PDF
    Introduction: Dizziness and balance impairment are common symptoms of mild traumatic brain injury (mTBI). Acid-sensing ion channel 3 (ASIC3) is expressed in the vestibular and proprioceptive systems and associated with balance functions. However, whether the genetic variants of ASIC3 are associated with people who suffer dizziness and balance impairment after mTBI remained unknown.Materials and methods: A total of 200 people with mTBI and 109 non-mTBI controls were recruited. Dizziness, balance functions, and the ability to perform daily activities were assessed by Dizziness Handicap Inventory (DHI), and objective balance functions were investigated by the postural stability test. Three diseases-related genetic variants of ASIC3 were determined through polymerase chain reaction and followed by restriction fragment length polymorphism. The Student's t-test and Mann-Whitney U-test were used for normal and abnormal distributed data, respectively. The regression was applied to adjust gender and age. The normality of continuous data was evaluated by Shapiro-Wilk test.Results: In the mTBI people, the rs2288645-A allele carriers exhibited a significantly worse physical domain DHI score (A-allele carriers: 11.39 ± 8.42, non-A carriers: 8.76 ± 7.87, p = 0.03). The rs4148855-GTC deletion carriers an exhibited significantly worse overall postural stability (GTC deletion carriers: 0.53 ± 0.33, non-carriers: 0.46 ± 0.20, p = 0.03). In the controls, rs2288646-A allele carriers were significant worse in the medial-to-lateral postural stability (A-allele carriers: 0.31 ± 0.17, non-A carriers: 0.21 ± 0.10, p = 0.01).Conclusion: The present study demonstrated that ASIC3 genetic variants were associated with certain aspects of balance functions and dizziness questionnaires in people of mTBI and non-mTBI. It provides a possible evidence that ASIC3 could be a new target for the management of the balancing disorders. However, further investigations are warranted to elucidate the underlying mechanisms and clinical significance

    Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    Get PDF
    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies
    • …
    corecore