144 research outputs found

    Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera)

    Get PDF
    We tested the hypothesis that cytochrome c oxidase subunit 1 (COI) sequences would successfully discriminate recognised species of New Zealand caddisflies. We further examined whether phylogenetic analyses, based on the COI locus, could recover currently recognised superfamilies and suborders. COI sequences were obtained from 105 individuals representing 61 species and all 16 families of Trichoptera known from New Zealand. No sequence sharing was observed between members of different species, and congeneric species showed from 2.3 to 19.5% divergence. Sequence divergence among members of a species was typically low (mean = 0.7%; range 0.0–8.5%), but two species showed intraspecific divergences in excess of 2%. Phylogenetic reconstructions based on COI were largely congruent with previous conclusions based on morphology, although the sequence data did not support placement of the purse-cased caddisflies (Hydroptilidae) within the uncased caddisflies, and, in particular, the Rhyacophiloidea. We conclude that sequence variation in the COI gene locus is an effective tool for the identification of New Zealand caddisfly species, and can provide preliminary phylogenetic inferences. Further research is needed to ascertain the significance of the few instances of high intra-specific divergence and to determine if any instances of sequence sharing will be detected with larger sample sizes

    In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species

    Get PDF
    Abstract To facilitate future assessments of diversity following disturbance events, we conducted a first level inventory of nocturnal Lepidoptera in Stanley Park, Vancouver, Canada. To aid the considerable task, we employed high-throughput DNA barcoding for the rough sorting of all material and for tentative species identifications, where possible. We report the preliminary species list of 190, the detection of four new exotic species (Argyresthia pruniella, Dichelia histrionana, Paraswammerdamia lutarea, and Prays fraxinella), and the potential discovery of two cryptic species. We describe the magnitude of assistance that barcoding presents for faunal inventories, from reducing specialist time to facilitating the detection of native and exotic species at low density

    Intrauterine exposures, pregnancy estrogens and breast cancer risk: where do we currently stand?

    Get PDF
    Since 1990, when a hypothesis on intrauterine influences on breast cancer risk was published, several studies have provided supportive, indirect evidence by documenting associations of birth weight and other correlates of the prenatal environment with breast cancer risk in offspring. Recent results from a unique cohort of women with documented exposure to diethylstilbestrol in utero have provided direct evidence in support of a potential role of pregnancy oestrogens on breast cancer risk in offspring

    A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples

    Get PDF
    The synthesis of this dataset was enabled by funding from the Canada Foundation for Innovation, from Genome Canada through Ontario Genomics, from NSERC, and from the Ontario Ministry of Research, Innovation and Science in support of the International Barcode of Life project. It was also enabled by philanthropic support from the Gordon and Betty Moore Foundation and from Ann McCain Evans and Chris Evans. The release of the data on GGBN was supported by a GGBN – Global Genome Initiative Award and we thank G. Droege, L. Loo, K. Barker, and J. Coddington for their support. Our work depended heavily on the analytical capabilities of the Barcode of Life Data Systems (BOLD, www.boldsystems.org). We also thank colleagues at the CBG for their support, including S. Adamowicz, S. Bateson, E. Berzitis, V. Breton, V. Campbell, A. Castillo, C. Christopoulos, J. Cossey, C. Gallant, J. Gleason, R. Gwiazdowski, M. Hajibabaei, R. Hanner, K. Hough, P. Janetta, A. Pawlowski, S. Pedersen, J. Robertson, D. Roes, K. Seidle, M. A. Smith, B. St. Jacques, A. Stoneham, J. Stahlhut, R. Tabone, J.Topan, S. Walker, and C. Wei. For bioblitz-related assistance, we are grateful to D. Ireland, D. Metsger, A. Guidotti, J. Quinn and other members of Bioblitz Canada and Ontario Bioblitz. For our work in Canada’s national parks, we thank S. Woodley and J. Waithaka for their lead role in organizing permits and for the many Parks Canada staff who facilitated specimen collections, including M. Allen, D. Amirault-Langlais, J. Bastick, C. Belanger, C. Bergman, J.-F. Bisaillon, S. Boyle, J. Bridgland, S. Butland, L. Cabrera, R. Chapman, J. Chisholm, B. Chruszcz, D. Crossland, H. Dempsey, N. Denommee, T. Dobbie, C. Drake, J. Feltham, A. Forshner, K. Forster, S. Frey, L. Gardiner, P. Giroux, T. Golumbia, D. Guedo, N. Guujaaw, S. Hairsine, E. Hansen, C. Harpur, S. Hayes, J. Hofman, S. Irwin, B. Johnston, V. Kafa, N. Kang, P. Langan, P. Lawn, M. Mahy, D. Masse, D. Mazerolle, C. McCarthy, I. McDonald, J. McIntosh, C. McKillop, V. Minelga, C. Ouimet, S. Parker, N. Perry, J. Piccin, A. Promaine, P. Roy, M. Savoie, D. Sigouin, P. Sinkins, R. Sissons, C. Smith, R. Smith, H. Stewart, G. Sundbo, D. Tate, R. Tompson, E. Tremblay, Y. Troutet, K. Tulk, J. Van Wieren, C. Vance, G. Walker, D. Whitaker, C. White, R. Wissink, C. Wong, and Y. Zharikov. For our work near Canada’s ports in Vancouver, Toronto, Montreal, and Halifax, we thank R. Worcester, A. Chreston, M. Larrivee, and T. Zemlak, respectively. Many other organizations improved coverage in the reference library by providing access to specimens – they included the Canadian National Collection of Insects, Arachnids and Nematodes, Smithsonian Institution’s National Museum of Natural History, the Canadian Museum of Nature, the University of Guelph Insect Collection, the Royal British Columbia Museum, the Royal Ontario Museum, the Pacifc Forestry Centre, the Northern Forestry Centre, the Lyman Entomological Museum, the Churchill Northern Studies Centre, and rare Charitable Research Reserve. We also thank the many taxonomic specialists who identifed specimens, including A. Borkent, B. Brown, M. Buck, C. Carr, T. Ekrem, J. Fernandez Triana, C. Guppy, K. Heller, J. Huber, L. Jacobus, J. Kjaerandsen, J. Klimaszewski, D. Lafontaine, J-F. Landry, G. Martin, A. Nicolai, D. Porco, H. Proctor, D. Quicke, J. Savage, B. C. Schmidt, M. Sharkey, A. Smith, E. Stur, A. Tomas, J. Webb, N. Woodley, and X. Zhou. We also thank K. Kerr and T. Mason for facilitating collections at Toronto Zoo and D. Iles for servicing the trap at Wapusk National Park. This paper contributes to the University of Guelph’s Food from Thought research program supported by the Canada First Research Excellence Fund. The Barcode of Life Data System (BOLD; www.boldsystems.org)8 was used as the primary workbench for creating, storing, analyzing, and validating the specimen and sequence records and the associated data resources48. The BOLD platform has a private, password-protected workbench for the steps from specimen data entry to data validation (see details in Data Records), and a public data portal for the release of data in various formats. The latter is accessible through an API (http://www.boldsystems.org/index.php/resources/api?type=webservices) that can also be controlled through R75 with the package ‘bold’76.Peer reviewedPublisher PD

    Intrauterine environment, mammary gland mass and breast cancer risk

    Get PDF
    Two intimately linked hypotheses on breast cancer etiology are described. The main postulate of the first hypothesis is that higher levels of pregnancy estrogens and other hormones favor the generation of a higher number of susceptible stem cells with compromised genomic stability. The second hypothesis postulates that the mammary gland mass, as a correlate of the number of cells susceptible to transformation, is an important determinant of breast cancer risk. A simple integrated etiological model for breast cancer is presented and it is indicated that the model accommodates most epidemiological aspects of breast cancer occurrence and natural history

    Voltage-gated calcium channel subunits from platyhelminths : potential role in praziquantel action

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in International Journal for Parasitology 36 (2006): 625-632, doi:10.1016/j.ijpara.2006.02.002.Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves, and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family.This work was supported by PAPIIT grant IN-221702 to MCJ. RMG is supported by NIH grant AI 40522 and by the Neal Cornell Research Fund at the Marine Biological Laboratory

    Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers.</p> <p>Methods</p> <p>The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries.</p> <p>Results</p> <p>After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals.</p> <p>Conclusion</p> <p>The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.</p

    A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    Get PDF
    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species

    Openness in Education as a Praxis: From Individual Testimonials to Collective Voices

    Get PDF
    Why is Openness in Education important, and why is it critically needed at this moment? As manifested in our guiding question, the significance of Openness in Education and its immediate necessity form the heart of this collaborative editorial piece. This rather straightforward, yet nuanced query has sparked this collective endeavour by using individual testimonies, which may also be taken as living narratives, to reveal the value of Openness in Education as a praxis. Such testimonies serve as rich, personal narratives, critical introspections, and experience-based accounts that function as sources of data. The data gleaned from these narratives points to the understanding of Openness in Education as a complex, multilayered concept intricately woven into an array of values. These range from aspects such as sharing, access, flexibility, affordability, enlightenment, barrier-removal, empowerment, care, individual agency, trust, innovation, sustainability, collaboration, co-creation, social justice, equity, transparency, inclusivity, decolonization, democratisation, participation, liberty, and respect for diversity. This editorial, as a product of collective endeavour, invites its readers to independently engage with individual narratives, fostering the creation of unique interpretations. This call stems from the distinctive character of each narrative as they voice individual researchers’ perspectives from around the globe, articulating their insights within their unique situational contexts

    Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis

    Get PDF
    High‐throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site‐based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled “Next Generation Biodiversity Monitoring” was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3‐day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS‐based strategy to collectively build an integrative framework for site‐based biodiversity data generation
    corecore