177 research outputs found

    Effects of Wind Stress, Wind Speed and Direction on Phytoplankton Abundance in the Nearshore Zone of Lake Michigan

    Get PDF
    Phytoplankton data from a shore and offshore intake in the near-shore zone of Lake Michigan at Chicago were examined to determine the effects of wind speed and direction on phytoplankton density. Over the entire year, regression analysis indicated that a small (4.2 and 5.5 percent) but statistically significant portion of the daily variation in phytoplankton density at both sites occurred with densities increasing with increasing north winds. On days with only a north wind, wind speed accounted for 34.9 and 42.1 percent of the variation in phytoplankton abundance. During short periods ( \u3c one month) of relatively constant water temperature (e.g., January), wind stress, independent of wind direction, explained nearly 50 percent of the daily variation at the shore intake with phytoplankton density increasing with increasing wind speed. In the Chicago area during periods of thermal stratification, southwesterly winds produced upwellings which were accompanied by higher densities of both diatoms and blue-green Oscillatoria. The higher densities of blue-green algae caused by upwellings have not, to our knowledge, been previously reported in Lake Michigan

    Incremental interpretation and prediction of utterance meaning for interactive dialogue

    Get PDF
                                                                                                                    We present techniques for the incremental interpretation and prediction of utterance meaning in dialogue systems. These techniques open possibilities for systems to initiate responsive overlap behaviors during user speech, such as interrupting, acknowledging, or completing a user's utterance while it is still in progress. In an implemented system, we show that relatively high accuracy can be achieved in understanding of spontaneous utterances before utterances are completed. Further, we present a method for determining when a system has reached a point of maximal understanding of an ongoing user utterance, and show that this determination can be made with high precision. Finally, we discuss a prototype implementation that shows how systems can use these abilities to strategically initiate system completions of user utterances. More broadly, this framework facilitates the implementation of a range of overlap behaviors that are common in human dialogue, but have been largely absent in dialogue systems

    Communication system with adaptive noise suppression

    Get PDF
    A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise

    Reduction of Automobile and Aircraft Collisions with Wildlife in Indiana

    Get PDF
    Conflicts between wildlife and human interests have increased in recent decades due to growing human populations and the resulting expansion of anthropogenic pressures into wildlife habitat. Our overall objectives were to evaluate the the potential impacts of wildlife on transportation in Indiana and vice-versa. The results presented in this final report summarize two aspects of our research: the impact of automotive traffic on wildlife (“road kill”; Part I), and the wildlife hazards present at general aviation airports around the state (“airstrike”; Part II). The road kill dataset indicated that at 13 survey routes traversing 180 linear km of road, 11,068 animals were killed by traffic. These animals included mammals, birds, reptiles, and (mostly) amphibians. GIS data indicates that nearby wetlands were typically associated with a high incidence of road kill. While road kills were detected in all months, there were obvious seasonal and weather related patterns in the data. Most road kills occurred from July through September, which was concurrent with peak temperatures and precipitation levels. We highlight a variety of animal-friendly engineering options that can be used to effectively reduce encounters between wildlife and drivers, resulting in fewer accidents and less road kill. With regard to the airstrike dataset, airport habitats consisted mainly of short grass (40.2% of total airport area), soybean fields (10.3%), corn fields (9.5%), runway systems (8.1%), other development (6.6%), woodlots (5.2%), medium grass (4.8%), tall grass (4.6%), and hayfields (3.2%). At least two types of wildlife attractants were present at each airport property, and the most common wildlife attractants included standing water (ephemeral), open culverts, crop fields, woodlot refugia, and gravel piles. Proportion of airport perimeters fenced ranged from 7.5% to 100%, but most airport perimeters were \u3e40% fenced. Most airports with \u3e25% of the perimeter enclosed by chain-link fencing had 0.2-0.5 openings per 100 m of fence, with gaps and dig-holes being the most common openings. Considering the most hazardous species, 0-92 white-tailed deer and 0-28 coyotes were observed at individual airports combining all survey methods across a year. Of 16 bird species groups identified as hazardous to aircraft, American kestrel, blackbirds-starling, crows-ravens, mourning dove, shorebirds, sparrows, and swallows were present at 9-10 of the airport properties; geese, hawks (buteos), and vultures were present at 7-8 of the airport properties; and ducks, herons, and rock doves were present at 5-6. Questionnaires indicated that pilots using focal airports were accustomed to wildlife hazards: 69% of respondents reported that they had altered aircraft operation due to wildlife within the past year, and 25% reported involvement in a wildlife strike during the past year. Furthermore, 88% of respondents felt that wildlife populations at Indiana airports were at least “somewhat hazardous”. Despite pilots’ awareness of wildlife hazards, less than 70% of respondents supported the use of fencing or wildlife deterrents, 43% supported modification/elimination of wildlife habitat, and only 38% of respondents supported for lethal removal of wildlife on airport properties. Hazards associated with deer and coyotes can be alleviated by installing suitable fencing; for airports with extant fences, care should be taken to monitor fences regularly and repair gaps as soon as they are discovered. Presence of deer and coyotes inside airport fences should not be tolerated. Birds are best managed by maintaining airport habitats in a manner that minimizes availability and/or quality of food, water, cover, and loafing sites for hazardous species. Furthermore, several new technologies and refinements in techniques for wildlife damage management at airports have emerged recently and may benefit small airports, such as advancements in electric fencing and the use of dead bird effigies to repel some hazardous bird species

    A review of mitigation measures for reducing wildlife mortality on roadways

    Get PDF
    A growing literature in the field of road ecology suggests that vehicle/wildlife collisions are important to biologists and transportation officials alike. Roads can affect the quality and quantity of available wildlife habitat, most notably through fragmentation. Likewise, vehicular traffic on roads can be direct sources of wildlife mortality and in some instances, can be catastrophic to populations. Thus, connectivity of habitat and permeability of road systems are important factors to consider when developing road mortality mitigation systems. There are a variety of approaches that can be used to reduce the effects of roads and road mortality on wildlife populations. Here, we briefly review wildlife-crossing structures, summarize previous wildlife road mortality mitigation studies, describe common mitigation measures, and discuss factors that influence the overall effectiveness of mitigation strategies. Because there are very few road mortality studies “before” and “after” the installation of wildlife-crossing structures, their efficiency is nearly impossible to evaluate. However, simple and relatively inexpensive measures reviewed herein can almost certainly reduce the number of collisions between wildlife and automobile

    An End-to-End Conversational Style Matching Agent

    Full text link
    We present an end-to-end voice-based conversational agent that is able to engage in naturalistic multi-turn dialogue and align with the interlocutor's conversational style. The system uses a series of deep neural network components for speech recognition, dialogue generation, prosodic analysis and speech synthesis to generate language and prosodic expression with qualities that match those of the user. We conducted a user study (N=30) in which participants talked with the agent for 15 to 20 minutes, resulting in over 8 hours of natural interaction data. Users with high consideration conversational styles reported the agent to be more trustworthy when it matched their conversational style. Whereas, users with high involvement conversational styles were indifferent. Finally, we provide design guidelines for multi-turn dialogue interactions using conversational style adaptation

    Adaptive Suppression of Noise in Voice Communications

    Get PDF
    A subsystem for the adaptive suppression of noise in a voice communication system effects a high level of reduction of noise that enters the system through microphones. The subsystem includes a digital signal processor (DSP) plus circuitry that implements voice-recognition and spectral- manipulation techniques. The development of the adaptive noise-suppression subsystem was prompted by the following considerations: During processing of the space shuttle at Kennedy Space Center, voice communications among test team members have been significantly impaired in several instances because some test participants have had to communicate from locations with high ambient noise levels. Ear protection for the personnel involved is commercially available and is used in such situations. However, commercially available noise-canceling microphones do not provide sufficient reduction of noise that enters through microphones and thus becomes transmitted on outbound communication links

    Real-Time Understanding of Complex Discriminative Scene Descriptions

    Get PDF
    Manuvinakurike R, Kennington C, DeVault D, Schlangen D. Real-Time Understanding of Complex Discriminative Scene Descriptions. In: Proceedings of the 17th Annual SIGdial Meeting on Discourse and Dialogue. 2016

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar
    • …
    corecore