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Abstract 

Phytoplankton data from a shore and offshore intake in the near­

shore zone of Lake Michigan at Chicago were examined to determine the 

effects of wind speed and direction on phytoplankton density. Over 

the entire year, regression analysis indicated that a small (4.2 and 

5.5 percent) but statistically significant portion of the daily 

variation in phytoplankton density at both sites occurred with den­

sities increasing with increasing north winds. On days with only a 

north wind, wind speed accounted for 34.9 and 42.1 percent of the 

variation in phytoplankton abl.U'l.dance. During short periods ( < one 

month) of J:elatively constant water temperature (e.g., January), 

wind stress, independent of wind direction, explained nearly 50 

percent of the daily variation at the shore intake with phytoplankton 

density increasing with increasing wind speed. 

In the Chicago area during periods of thermal stratification, 
,I 

southwesterly winds produced upwellings which were accompanied by 

higher densities of both diatoms and blue-green Oscillatoria. The 

higher densities of blue-green algae caused by upwellings have not, 

to our knowledge, been previously reported in Lake M14j:h1gan. 

vi 



INTRODUCTION 

The process of eutrophication in Lake Michigan and the other 

Great Lakes differ• considerably from that in smaller lakes (Beeton 

1965, Stoermer and Ladewski 1976, Stoermer and Tuc:lcman 1980). Due 

to the large size of the Great Lakes and to their slow horizootal 

mixing (Boyce 1974), the entire lake ecosystem does not initially 
' 

respond to increases in nutrient loadings. Instead, a nearshore 

impact zone develops while offshore waters remain relatively 

unaffected (Schelske and Stoermer 1971, Rousar and Beeton 1973, 

Gannon 1975). 

The nearshore ill;Pact zone is a result of the proximity of 

nutrient sources and of physical phenomena unique to large lakes. 

Within the nearshore zone, an area up to 10 km fran shore (Csanady 

1970, 1975), surface currents ere generally parallel to shore and 

will flow in the same direction until a wind of sufficient. strength 

produces a reversal in current directioo (Csanady 1970, 1975; Boyce 

1974). The nearahore currents typically have velocities that are 

significantly higher than those offshore (Csanady 1968, 1970). As 

' a result, the water in the nearshore zone tends to move up and down 

the shore, with significant onshore to offshore mixing limited to 

periods of current reversal (Csanady 1970, Mortimltr and Csanady 

1975). In spring and autumn, horizontal mixing may be further 

1 
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inhibited by forrnati~ of the thermal bar (Rodgers 1965, Boyce 1974, . ., 
·Mortimer and Csanady 1975) • 

As in the open lake, the primary source of kinetic energy to 

the nearshore zone is wind. However, the nearshore water responds 

more dramatically to changes in wind speed and direction with wind 

shifts often being accompanied by major (and often rapid) readjust­

ments in the current regime (Haung 1971, Boyce 1974, Sato '11d 

Mortimer 1975). This may result in the relatively rapid transport 
' 

of water via longshore currents, as well as the movement of surface 

water from the open lake toward the shore (Csanady 1970, Mortimer and 

Csanady 1975). During stratified periods, the shoreward movement of 

surface water along one coast may result in upwelling along the 

opposite shoreline (Murty and Rao 1970, Boyce 1974). Because 

nutrient concentration and temperature are important growth factors 

for phytoplankton, the intrusion of relatively nutrient rich hypo­

ljpletic water at the surface during upwelling and the resulting 

tempe~ure decreases may be of biological importance (Boyce 1974). 

Thus the nearshore is subject to substantial variation in chemical 

and physical parameters due to wind action (Boyce 1974). 

The nearshore zone phytoplankton populations are generally 

characterized by higher densities and eutrophic forms (Davis 1962; 

Holltmd and Beeton 1972; Holland 1968, 1969; Beeton and Edmondson 

1972; Stadelmann et al. 1974; Sternberger 1974) caused·by the warmer -- . 
waters and nutri~nt trapped shoreward of the thermal bar (Rodgers 

1965, Munawar and Munawar 1975, Lorefice and Munawo.r 1974). However, 
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as is the case with chemical and physical parameters, nearshore 

daily phytoplankton densities maY, be extremely variable (Griffith 

1955, Tarapchak and Stoermer 1976, Stoermer and Tuck:man 1980). At 

least a portion of this daily variability in phytoplankton abundance 

should be a resul ~ of wind generated water movements. Such water 

movement has been shown to affect the horizontal and vertical dis­

tribution of both zooplankton (Andrews 1948, Colebrook 1960) and 

phytoplankton (Small 1967, Gronberg et al. 1974, Theriault et al. 1978). - ...... _._., -
Despite the high variability of nearshore phytoplankton popu­

lations and the knowledge that wind generated water movements may 

affect the spatial distribution and abundance of phytoplankton, 

phytoplankton studies have concentrated on the effects of nutrients 

and temperature on abundance. There have been few studies of the 

effects of wind on nearshore phytoplankton populations. The objec­

tive of this study was to determine the effect of wind on the phyto­

plankton abundance in the nearshore region of Lake Michigan at Chicago. 



,METHODS 

t "' Daily data on phytoplenkton and water temperature from the off-

shore and shore intakes of the Central Filtration Plant of the City 

of Chicago were obtained for the year 1975. 'l'he offshore (Carter 

Harrison Crib) is located ~n 9 m of water at a distance of 4.5 km 
. ' . ;, . 

from shore, while the shore intake is located at th9 shore in 4 m of 

water (Ginsberg, personal communication) (Fig. 1). P~ytoplankton 

analysis was performed by plant personnel usingithe Sedgewick-Rafter 

Method (American Public Health Association 1960, Makarewicz and 

Baybutt 1981). Organisms were identified to genera with colonial 

greens and blue greens reported as colonies or filaments/ml and dia- • 

toms and.unicellular forms as cells/ml. 

Daily mean wind speed and· wind direction recorded at Midway 

Airport (12 km west of Lake Michigan) were also obtained from the 

City of Chicago for 1975. Two conversions were applied to the wind 

data. The first created a single variable representative of both 

speed and direction. The direction from which the wind originated 

was converted to its compass bearing .in degrees. By rotating the 

usual compass bearing assigned to a direction and taking the sine 

function of that bearing, different weights could be created to rep­

resent direction. For example, the usual assignment of 0/360 to 

north, 90 eaat and 180 south would produc, weights of o, 1 and o 

4 
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(i.e., sine 90 • 1, sine 360 = sine 180 • O). If the number of 

0 degrees assigne~ to a direction were rotated clockwise by 90 

(north• 270, east• 0/360, south• 90), weights of -1, 0 end 1 

would be generated fo~ north, east end south, respectively. The 

weights thus created wer~ then multiplied by the wind speed (cm/sec) 

to create a variable representative of speed weighted by direction. 

The creation of t~se weights resulted in en unambiguous indicator 

of direction that could not be generated using wind bearings as a 

low wind speed from a high bearin9 could equal a high wind speed from 

a iow bearing. 

As any effect produced by wind on the phytoplankton population 

would ultimately result from energy input at the air water interface, 

the wind data were also converted to wind stress (gm/cm2/sec) following 

Ayers• et al. (1958) equation. This equation is applicable at wind --
speeds below 7 m/sec, a condition that was exceeded on only three 

days (April 2, B.9 m/sec; September 24, 9.4 m/sec; November 14, 

8.9 m/sec) in 1975. 

Regression analyses employed the various forms of the sine­

velocity function, wind direction, wind speed end wind stress as 

predictors of phytoplankton density at both the crib and shore site. 

Phytoplankton data were transformed to log10(x + 1) to better meet 

the assumptions of normality and equal variance. 

In January, the effects of changing temperature, light and nutrient 

regimes of phytoplankton density would be minimal (e.g., temperature 

0 range 1.1 to 2.2 C). Much of the daily variation in phytoplankton 

-
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density should be due to wind effects. In January, regression anal­

ysis using wind stress and correlation analysis using the following 

adjusted density (AD) were useda AD• (daily genera density - mean 

monthly �a density). This variable may be viewed as a measure 

of the variance about the monthly meaq density. Analysis using the 

AD function assumes that over a short time peripd (1 month) o� 

fairly constant temperature and nutrient concentrations, the.daily 

density would closely approach the monthly mean density in the ab­

sence of wind effects. The Mini-Tab Statistical Packag� on a Prime 

400 computer was used for data analysis. 



RESULTS 

Wind Effects 

The sine-velocity function allowed each wind direction (N, NE, 

E, SE, s, sw, w, NW) to be weighted on a scale of 1 to -1. These 

weights were then multiplied by the corresponding wind speeds and 

regressed against phytoplankton dei:i5ity. Only the north weighting 

(wind direction = 1) was significant (P "- .01), explaining 4.2 and 

5.5 percent of the daily variation in the phytoplankton density over 

the entire year at the offshore and shore sites, respectively 

(Table 1). On days with only a north wind, wind speed accounted 

for 34.9 and 42.1 percent of the variation in the phytoplankton 

abundance (Table 1).

As any effect on the phytoplankton density produced by wind 

would be the result of energy transfer at the air/water interface, 

.the wind data was converted to stress ( gm/an2 /sec) and the regressions

with the.data separated by wind direction rerun. As expected, sig­

nificant results were found only on days with north winds (Table 1, 

Fig. 2) at the shore and offshore sites. 

Because temperature can be an important factor affecting phyto­

plankton density (Darnenn 1966, Stoermer and LadewsJd .. 1976, Makarewicz 

� !!.• 1979), regressions using water temperature as the predictor 

of phytoplankton density (log10x+1, where x = number of organisms/ml)

7 
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.,, 
were run at both sites over the entire year. These regressions were 

highiy significant (P .c:::. .01) and explained over "15 percent of the 

daily variation at both sites. Because the effect of temperature 

is relatively large canpared to wind, a~period of relatively constant 

~ . . 
water temperature should provide for a more precise ~valuation of 

wind effects on phytoplankton abundance. January 1975 was chosen as 

a study period because water temperatures ranged only a few tenths of 

a degree (1.1 to 2.2°c). Ice cover near Chicago during this period 

was minimal with no ice observed through January 5 and only open 

pack ice from January 6 through the middle of February (Leshkevich 1976). 

No significant relationships existed between the sine-velocity 

function and phytoplankton density at either site in January. This 

was not totally unexpected as there was only one day when north 

winds prevailed. However, wind stress (independent of direction) as 

a predictor of phytoplankton abundance in january was highly sig­

nificant at the shore, explaining 49 percent of the daily varietion 

(Table 1). During this period Tabellar!a spp., Fragilaria spp. and 

Stephanodiscus spp. were the dominant taxa. comprising 30, 16 and 29 . . 
percent of the total population, respectively. Regressi9ns of wind 

stress versus taxa abundance at the shore Y,ielded significant results 

for Tabellaria spp. and Fragilar:a spp. (Tabl,e 1, F~gs. 3 and 4). 

No significant results were ,foU11d for ~tephanodiscus spp. or other 

taxa at the shore or crib stations. 

As wind stntss appears r,sponsible ~or a large portion of the 

d~ily vari,tion of the abundant genera at the shore, tbe effects of 
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wind stress on the less important ( '- 10 percent ,of the total population) 

genera were ipvestigated. ~egression analysif fJiled to yield sig­

nificant results, possibly due to~ relatively low counts and 

frequent occurrence of zeros in the data base. Phytopl~ton abun­

dance of both the abundant and less abundant genera was, therefore, 

converted to the adjusted density CAD• daily - ~an monthly phyto­

plankton density) form and used in correl~tion ~lys~s with w!tld 

stress. Of the genera comprising more than 0.05 percent of the 

total mean population in January, only Navicula spp. and Stephanodiscus 

spp. were not positively correlated with wind stress using the adjusted 

density function at the shore site (Table 2). For the abundant 

gEtnera during January (Fragilaria spp. and Tabellaria spp.), density 

increased as wind stress inc~ased at our shore site. Both abundant 

and other, less abundant, genera were observed to exhibit higher 

counts (closer to or above the monthly mean) with higher wind stress 

during this period. This approach yielded no significant results 

for any geneDa at the ·Offshore site. 

UpwellinSJ 

By arbitrarily defining an up,.,1elling as a decrease in water tem-

o perature of 6 C or more over a period of 48 hours, one major and two 

minor upwelling events were observed in the July end August temperature 

data (Fig. s. Panel C). The first and largest of these events began 

on July 14 at the offshore site and was observed at the shore site 

beginning July 18. During this event water temperatures decreased 

13°c and 11°c at the offshore and shore sites, respectively. The 
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0 second event began on August 10 with temperature decreases of 4 c and 

1°c at the shore and offshore sites, respectively. The third event 

0 was barely noticeable at the shore while a 6 C temperature decrease 

occurred at the offshom site on August 24. 

All three events appeared to have been init!ated by south­

westerly winds between 200 and 400 cm/sec (Fig. 5, Panel B). South­

westerly winds move surface water in a northeasterly direction and 

have the net effect of causing the thermo<!line to tilt downward along 

the ea.stem shore and upward aiong the western shore (Mortimer and 

Csanady 1975). 

Panel A of Figure 5 illustrates the total phytoplankton density 

at'both sites. While there is a great deal of daily variation, it 

is clear that phytoplankton densities at both sites generally ·in­

crease in response to upwelling and decrease in the intervening 

warm periods. To better elucidate the effect of upwelling on f.he 

phytoplankton population, five-day mean water temperatures and cell 

counts for the most conrnon genera are plotted in Figures·6 and 7. 

These figures again illustrate that the population increases as water 

temperatures decrease. Most of this increase is a result of the 

diatoms Tabellaria spp .. and Fra9ilaria spp. Surprisingly, the 

cyanophyte Oacillatoria app. also increases during the upwelling. 



DISCUSSION 

An imderstanding of the vertical and temporal distribution of 

phytoplankton requires the determination of the factors influencing 

phytoplankton abundance. Generally, nutrient availability, temper­

ature and quantity and quality of light are considered to play 

fundamental roles in affecting algal abundance over the long and 

short periods of time. However, the structure of the plankton 

population at a give location within a lake may be markedly affected 

by currents and other wind generated phenomena. For example, Andrews 

(1948) observed changes in the horizontal distribution of Cyclops 

spp., Diaptomus spp. and turbidity in western Lake Erie following a 

storm with high winds. Ayers and Seible ( 19·73) concluded that small 

scale water masses, each with different chemical and biological 

characteristics, moved through their sampling crib at Beeton Harbor 

(Lake Michigan). In general, plankton populations have been ob­

served to move with their associaptd wind driven water masses in 

several lakes including Lake Erie (Andrews 1948), Lake Huron 

(Schelske et al. 1974), Clear Lake (Iowa) (Small 1967), ·Windemere 
--

(Great Britain) (Colebrook 1960) and Clear Lake (California) (Horne 

and Wrigley 1975). 

Occurrences of shoreward movement of water and accumulation of 

phytoplankton at the d�wind shore have also been observed. In 

Clear Lake (:towa), Small (1963) observed that chlorophyll tended to 

accumulate near the·downwind shore. In Lake Malaren (Sweden) 

11 
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Gronberg et al. (1974) observed that NNE winds caused the movement 
--

of surface water containing large amounts of phytoplankton towards 

the southwest shore. 

OUr results suggest that over the entire year only a small but 

significant portion of the daily variation in phytoplankton density 

at both the offshore and shore sites of Lake Michigan at Chicago can 

be attributed to daily variation in wind speed and direction. How­

ever, on those days with a north wind only, a large portion of the 

daily variation is explained by increasing wind speed. 

The effect of wind on lake water is a function of both the speed 

and fetch of the wind. In general, the greater the wind speed and 

fetch, the greater the speed of the currents generated and the 

volume of water moved (Hutchinson 1957, Boyce 1974). Also, obser­

vations of surface currents indicate a movement at an angle of 

approximately 72 degrees to the right of the prevailing wind 

(Federal Water Pollution Control Association 1967). The location of 

the Chicago water intake cribs in the southwestern portion of the 

north to south oriented Michigan basin provides the greatest fetch 

for northerly winds resulting in a shoreward movement of water. 

This shoreward movement could occur within 1.s hours after a shift 

of the wind to a northerly direction (Sato and Mortimer 1975). 

In Lake Michigan, both theory and observation suggest that 

northerly-�inds should cause surface waters to move towards the 

western shore of� lake causing phytoplankton to accumulate there. 

We have no completely satisfactory mechanism explaining the accumulation 
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of ph~oplankton in the nearshore zone as a result of northerly wind 

generated currents. One interesting possibility is that the accumu­

lation of phytoplankton results from the change in current structure 
' ' 

aqd nutrient concentration encountered as an organism moves from the 

open lake toward the shore. The nearshore current regime is char­

acterized by shore parallel currents produced by the interaction of 

shoreward currents with the shoreline (Csanady 1970). During periods 

of shoreward flow (as dur~g north wind events at Chicago), a cross 

current of shoreward flow at the surface and lakeward flow at the 

bottom are superimposed on the shore parallel ~t structure 
... 

(Csanady 1975). Thus a pl~ktonic organism under the influence of 

north winds would first move toward the western shore of Lake Michigan. 

Once in the nearshore zone, the organism would be expected to move 

parallel to the shore or alternatively back towards the open lake 

with the returning bottom cross flow current. Whether an organism 

remains in tpe ahore parallel C\lrrents or is moved lakeward near 

the bottom may depend in part on the density and resulting sinking 

speed of that organism. Titman and Kilham (1976) have reported a 

decrease in sinking speed for several phytoplankton species in cul­

ture within a few hours of relaxing nutrient limitations. A phyto­

plankton moving from the relatively nutrient poor open laJce to the 

relatively nutrient .rich nearshore (Rockwell et al. 1980) would ,---

probably ~ience some relaxation in nut;-ient limitation. Due to 

~he resulting decrease in sinking speed, the organism would be less 

li~ly to be returned lakeward with the returning bottom cross flow 
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current leading to an accumulation of phytoplankton in the nearshore 

zone. 

While wind speed and direction may account for a small amount 

of the daily·variation in phytoplankton over the entire year, wind 

stress~ independent of wind direction, was a major source of variation 

in phytoplankton abundance at our shore station over periods of one 

month or less when temperatures were relatively constant. Because 

ther~ was not• significant wind direction effect due to the lack of 

north winds in January of 1975, it is not possible to suggest that 

wind produced surface~currents tended to ~ccumulat& phytoplanktorr at 

the downwind side of the lake (i.e, Chicago). 

Total phosphorus concentrations at the South District Filtration 

Plant (Chicago) are positively correlated with wind speed (Snow 1974). 

This correlation suggests that t~ observed concentrations in the 

nearspore water are determined partly by resuspension of bottom 

sediments which Schleicher and Kuhn (1970) have shown to contain 

phosphorus. The possibility exists that increased wind speed and thus 

windrstress ne~shore may cause resuspension of bottom materials, 

increue nutrient concentrations and stimulate phytoplankton growth. 

However, if the increase in algal density associated with higher 

wind speeds were due to nutrient stimulation, a time lag between 

nutrient and phytoplankton increase would be expected. In ,!!l ~ 

nutrient addition experiments on Lakes Michigan (Schelske ,!i !!.• 

1974) , Superior (Schelske ~ !!• 1972) and
4 

Huron (Lin and Schelske 

1978) , a time lag of approximately two days has been observed. A 
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two-day time lag.between change in wind directiQfl and higher abun­

dances of phytoplankton was not observed in this study. Increases 

in phytoplankton density occurred on the same day as the increased 

wj,nd stress. As mentioned earlier, the shoreward moveJl\l!nt of water 

could J:>egin within 1.s hours after a shift to northerly winds. We do 

not imply that increased nutrients are not responsible in part for 

increased phytoplankton densities in the long term� We simply suggest 

that the sudden increase over a short period with higher wind speeds 

is not ca�ed by nutrient stimulation of phytoplankton growth. 

At least a portion of the increase in plankton density at the 

shore intake is a result of resuspension of bottom organisms. Several 

of the abundant species of Tabellaria and Fragilaria col'lll'lon near 

Chica90 frequently occur as members of the periphyton. These include 

!• inte.rmedia, !• �innata, !• capucina, !• fenestrata and !• floccu­

losa (Hustedt 1932, Stoermer and Yang 1970, Lowe 1974). With the 
-

possible exception of Asterionella spp., the less abundant (Asterio­

nella, Synedra, Oscillatoria) genera that increased with wind stress 

also contain species that are .. associated with attached or benthic 

communities for at least part of their life cycles (Prescott 1968, 

Stoermer and Yang 1970, Lowe 1974). At the offshore site, the 

greater water depth and distance from shore would be expected to 

reduce such resuspension. We found no relationship �tween wind 

speed and phytoplankton density in January at the off�hore site. 

While w�nds from the north generally increase phytoplankton 

density at both sites, wind from other directions may affect algal 
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densities temporarily when the lake is thermally stra~ified. Up~ 

welling and subsequent increases in phytoplankton density were 

observed in response to southwesterly·winds. The association of 

s~uthwesterly winds with upwelling along the west coast of Lake 

Michigan agrees with the upwelling pa_ttern reported by Murty and 

Rao (1970) and Csanady (1972)~ 

Upwelling events were accompanied by increased densities of 

Tabellaria spp., Asterionella,spp. and Fragilaria spp. a~ both sites. 

The Cyanophyte, Oscillatoria spp., also increased during these 

events. Increased diatom populations ~s a result of upwelling have 

~lso been observed by Schelske !!!!• (1971). Increased densities 

of blue-green algae as a result of upwelling have not, to our knowl­

edge, been reported in Lake Michigan. 

The observed changes in phytoplankton density during and im­

mediately following upwelling may result from increased nutrient 

concentrations and/or the organisms being carried into the sample 

area by the water upwelling. Phosphorus and silica, elements con­

sidered to limit phytoplankton gr<Mth in Lake Michigan, typically 

exhibit higher concentrations in the hypolimnion during suimner 

stratification (ttutchinson 1957, Schelske ~ .!!• 1971, Rockwell !! 

al. 1980) • .As epilimnetic silica has been depleted to levels - . 
limiting to the diatoms in recent years (Stoermer 1974, Parker et . -
al. 1977, Rock.well et al. 1980), the infusion of silica rich hypo---- ,...._ ....... 
limnetic water may explain the increased diatom populations. This 

does not, however, explain the observed increase in Oscillatoria spp. 
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While increased phosphorus levels remain as a possible contrib­

utor to increased algal densities, the alternate hypothesis that at 

least a ~art of the increase is a result of horizontal and vertical 

"movement of organisms into the sampling area must be considered. By 

definition, upwelling is the horizontal and vertical movement of 

hypolimnetic water toward the shore and surface as a result of 

tilting of the thermocline (Mortimer and Csanady 1975). Recently, 

a deep chlorophyll maxima has been observed in the lower metalimnion 

of Lake Michigan (Brooks and Torke 1977, Mortonson and Brooks 1980) 

and in the eastern basin of Lake Erie (Devault, unpublished data). 

In Lake Michigan this maxima was composed of Dinobryon sociale, 

Tabellaria fenestrata, Fragilaria crotonensis and green and blue­

green filamentous algae (Brooks and Torke 1977). Species of Oscil­

latoria spp. also occur in the metalimnetic region (Klemer ~.!!.· 

1981). The genera Fragilaria, Tabellaria and Oscillatoria increased 

in our data. It is not unreasonable to suggest that the surface and 

shoreward movement of metalimnetic and hypolimnetic water was accom­

panied by phytoplankton organisms inhabiting these areas. This 

would result in the sudden increase in algal densities observed. 

_With time, the availability of nutrient from the nutrient rich hypo­

limnetic water would probably further enhance growth of the phyto­

plankton population. 



LITERATURE C1TED 

American Public Health Association. 1960. 
Examination of Water and Wastewater. 

Standard Methods for the 
11th ed. New York. 626 p. 

Andrews, T.F. 1948. Temporary changes qf certain U.mnological con­
ditions in western 4ake Erie produced by windstorm. Ecology. 
29: 501-505. 

Ayers, J.C., o.c. Chandler, G.H. Lauff, c.F. Powers and E.B. Henson. 
1958. Currents and water masses of Lake Michigan. Great Lakes 
Res. Div. Publ. No. 13, Univ. Michigan. 167 p. 

Ayers, J.C. and E. Seibel. 1973. Benton Harbor Power Plant studies. 
Part XIII. Cook Plant preoperational studies, 1972. Great 
Lakes. Res. Div. Spec. Rep. No. 44, Univ. Mich+gan. 281 p. 

Beeton, A.M. 1965. Eutrophication of the St. Lawrence Great Lakes. 
Limnol. Oceanogr. 10: 240-254. 

Beeton, A.M and w.T. Edmondson. 1972. The eutrophication problem. 
J. Fish. Res. Board Can. 29: 637-682. 

Boyce, F.M. 1974. Some aspects of Great Lakes physics of importance 
to biological and chemical processes. J. Fish. Res. Board 
Can. 31: 689-730. 

Brooks, A.S. end B.G. Torke. 1977. Vertical and seasonal dis­
tribution of chlorophyll "a" in Lake Michigan. J. Fish. Res. 
Board Can. 34: 2280-2287. 

Colebrook, J.M. 1960. Plankton and water movements in Windemere. 
,J. Animal Ecol. 29: 217-240. 

Csanady, G.T. 1968. Wind driven sunner circulation in the Great 
Lakes. J. Geophys. Res. 73: 2579-2589. 

Csanady, G.T. 1970. Dispersal of effluents in the Great Lakes. 
Water Res. 4: 79-114. 

Csanady, G.T. 1972. Response of large stratified lakes to wind. 
J. Phys. Oceanogr. 2: 3-14. 

Csanady, G.T. 1975. Circulation, diffusion, and frontal ~ynamics 
in~ coastal zone. J. Great Lakes Res. 1: 18-31. 

18 



19 

Damann, K.E. 1966. Plankton studies of Lake Michigan. III. Seasonal 
periodicity of total plankton. Proc. 9th Conf. Great Lakes 
Ref• Great Lakes Res. Div. Pub!. No. 15, Univ. Michigan. 
PP• 9-17. 

Davis, c.c. 1962. The plankton of the Cleveland Harbor area in Lake 
Erie in 1956-1957. Ecol. Monogr. 32: 209-247. 

Devault, D.S., o.c. Rockwell, M.F. Palmer and R.J. Bowden. 1981. 
Calumet-Indiana nearshore study - 1977. u.s.E.P.A., Great Lakes

National Program Office. 67 p • •  In Press. 

Federal Water Pollution Control Administration. 1967. Lake Michigan 
basin. Lake currents. F.W.P.C.A. Chicago, Illinois. 316 p. 

Gannc>r\, J.E. 1975. Horizontal distributio� of crustacean zoo­
-plankton along a cross lake transect in Lake Michigan. J. Great 
Lakes Res. 1: 79-91. 

Griffith, R.E. 1955. Analysis of phytoplankton yields in relation 
to certain physical and chemical factors of Lake Michigan. 
Ecology. 36: 543-552. 

Gronberg, A., A. Tolstoy and K. Sederqvist. 1974. Limnological 
studies in Ekoln Bay of Lake Malaren 1967-1969. Sartryck ur 
Vatten. 1: 20-34. 

Haung, J.C.K. 
Oceanogr. 

1971. The thermal current in Lake Michigan. J. Phys. 
1: 105-122. 

Holland, P.E. 1968. Correlation of Melosira species with trophic 
status in Lake Michigan. Lirnnol. Oceanogr. 13: 555-557. 

Holl�d, P •. E.. 1969. Seasonal fluctuations of Lake Michigan diatoms • 
. Limnol. Oceanogr. 14: 423-436. 

Holland, P.E. amd A.M. Beeton. 1972. Significance to eutrophication 
of spatial differences in nutrients and diatoms in Lake Michigan. 
Limnol. Oceanogr. 17: 88-96. 

Horne, A.J. and R.C. Wrigley. 1975. The use of remote sensing to 
detect how wind influences planktonic blue-green algal dis­
tribution. Verb. Internat. Verein. Liranol. 19: 784-791. 

Hustedt, F. 1932. Bacillariophyta. 
Sasswasserflora Mittelleuropas. 

In A. Pasehers (ed.). 
Jena. 10: 1-466. 

Die 

Hutchinson, G.E. 1957. Jt treatise on limnology. I. Geography, 
physics, and chemistry. J. Wiley and Sons, New York. 1015 'P· 



20 

Klemer, A.M., D.c. Pierson and M.C. Whiteside. 1981. The primary 
role of limiting nutrients in determining the occurrence of deep 
population maxima of Oscillatoria agardhii var. Isothri (abstract). 
44th Annual Meeting of the American Society of Limnology and 
Oc:eanography, Milwaukee, Wisconsin. 

Leshkevich, K.L. 1976. Summary of Great Lakes weather and ice con­
ditions, winter 1975-76. NOAA Technical Memorandum. ERL-GLERL 24. 

Lin, c.K. and c.L. Schelske. 1978. Effects of nutrient enrichment, 
light intensity and temperature on growth of phytoplankton from 
Lake Huron. Great Lakes Res. _Div. Spec. Rep. No. 63, Univ. 
Michigan. 61 p. 

Lorefice, G.L. and M. Munawar. 1974. The abundance of diatoms in the 
southwestern nearshore region of Lake Ontario during the spring 
thermal bar period. Proc. 17th Conf. Great Lakes Res., Int. 
Assoc. Great Lakes Res. pp. 619-628. 

Lowe, R.L. 1974. Environmentai requirements and pollution tolerance 
ot-=freshwater dia~oms. u.s.E.P.A., Cincinnati. 333 p. 

Makarewicz, J.C., R.I. Baybutt and K.E. Damann. 1979. Changes in 
the apparent temperature optima of plankton of Lake Michigan at 
Chicago, Illinois. J. Fish. Res. Board Can. 36: 1169-1173. 

Makarewicz, J.C. and R.I. Baybutt. 1981. Long-term (1927-1978) 
changes in the phytoplankton community of Lake Michigan at 
Chicago. Bull. Torrey Botan. Club. 108(2): 240-254. 

Mortimer, C.H. and G.T. Csanady. 
Lake Michigan region. Vol. 
Michigan. Argonne National 
ANL/ES-40. 117 ·p. 

1975. Environmental status of the 
2. Physical limnology of Lake 
Laboratory, Argonne, Illinois. 

Mortonson, J.A. and A.S. Brooks. 1980. Occurrence of a deep nitrate 
maximum in Lake Michigan. can. J. Fish. Aquat. Sci. 37: 
1025-1027. 

Munawar, M. and I.F. Munawar. 1975. Some observations on the growth 
of diatoms in Lake Ontario with emphasis on Melosira binderana 
Kutz during thermal bar conditions. Arch. Hydrobiol. 
75: 490-499. 

Murty, T.S. and D.B. Rao. 1970. Wind-generated circulations in 
Lakes Erie, Huron, Michigan and Superior. Proc. 13th Conf. 
Great Lakes Res., Int. Assoc. Great Lakes R!!s• pp. 927-941. 



21 

.. 
Parker, J.I., H.L. Conway and E.M. Yaguchi. 1977. Seasonal periodicity 

of diatoms and silicon limitation in offshore Lake Michigan, 1975. 
J. Fish. Res. Board can. 34: 552-558. 

Prescott, µ.W. · 
Brown Co. 

1968. Algae of the Western Great Lakes Area. 
963 p. 

Wm. c. 

Rockwell, D.c., o.s. Devault, M.F. Palmer, c.v. Marion and R.J. Bowden. 
j980. Lake Michigan intensive survey 1976-1977. Great Lakes 
National Program Office, u.s.E.P.A., Chicago, Illinois. 152 p. 

Rodgers, G.K. 1965. The thermal bar in the Laurentian Great Lakes. 
Great-Lakes Res. Div. Publ. No. 13, Univ. Michigan. pp. 358-363. 

Rou~o.r, o.c. and A.M. Beeton. 1973. Distribution of phosphorus 
silica, chlorophyll "a", and conductivity in Lake Michigan and 
Green Bay. Trans. Wisc. ~cad. Sci. Arts Lett. 61: 117-140. 

Sato, G.K. and C.H. Mortimer. 1975. Lake currents and temperature 
near the western shore of Lake Michigan. Center for Great Lakes 
Studies, Spec. Rep. No. 22, pniv. Michigan. 314 p •. 

Schelske, c.L. and E.F. Stoermer. 1971. Eutrophication, silica 
depletion, and predicted changes .in algal quality in Lake 
Mictµ.gan. Science. 173: 423-424. 

Schelske, c.L., E.F. Stoermer and L.E. Feldt. 1971. Nutrients, 
phytoplankton productivity, and species compositions influenced 
by upwelling in Lake Michigan. Proc. 14th Conf. Great Lakes 
Res., Int. Assoc. Great Lakes Res. pp. 102-113. 

Schelske, ~.L., L.E. Feldt, M.S. Simmons and E.F. Stoermer. 1974. 
Storm induced relationships among chemical conditions and phy­
toplankton in Saginaw Bay and western Lake Huron. Proc. 17th 
Conf. Great Lakes Res., Int. Assoc. Great Lakes Res. PP• 78-91. 

Schleicher, J.A. and J.K. Kuhn. 1970. Phosphorus content in un ... 
consolidated sediments from southern Lake Michigan. Ill. State 
Geol. Surv. Environ. Geol. Notes No. 39. 15 p. 

Small, L~F. 1967. Effect of wind on the distribution of chlorophyll 
in Clear Lake, :Iowa. Limnol. Oceanogr. 9: 426-432. 

Snow, R.H. 1974. Water pollution investigation. Calumet region of 
Lake Michigan. u.s.E.P.A., Chicago, Illinois. 361 p. 

Stadelmann, P., J.E. Moore and E. Pickett. 1974. Primary production 
in relation to temperature structw:"e, biomass concentration, 
and light conditions at an inshore and offshore station in Lake 
Ontario. J. Fish. Res. Board Can. 31: ~215-1232. 



22 

Sternberger, R.s. 1974. Temporal and spatial distribution of plank­
tonic rotifers irl Milwaukee Harbor and adjacent Lake Michigan. 
Proc. 17th Conf. Great Lakes Res., Int. Assoc. Great Lakes 
Res. PP• 120-134. 

Stoermer, E.F. 1974. ,!!! Pollution of Lake Michigan and its 
tributary basin in the states of Wisconsin, Illinois, Indiana 
and Michigan, 4th Session, Chicago, Illinois, 19-21 September 
1972. Vol. I. u.s.E.P.A., u.s. Government Printing Office. 
PP• 217-254. 

Stoermer, E.F. and J.J. Yang. 1970. Distribution and relative 
abundance of dominant plankton diatoms in Lake Michigan. Great 
Lakes Res. Div. Publ. No. 16, Univ. Michigan. 64 p. 

Stoermer, E.F. and T.B. Ladewskl. 1976. Apparent optimal tem­
peratures for the occurrence of some common phytoplankton 
species in southern Lake Michigan. Great Lakes Res. Div. 
Publ. No. 18, Univ. Michigan. 49 p. 

Stoermer, E.F. and M.L. Tuckman. 1980. Phytoplankton assembleges 
of the nearshore zone of southern Lake Michigan. u.s.E.P.A., 
Great Lakes National Program Office, Chicago, Illinois. 87 p. 

Tarapchak, s.J. and E.F. Stoermer. 1976. Environmental status of 
the Lake Michigan. region. 'Vol. 4. Phytoplankton of Lake 
Michigan. Argonne National Laboratory. Argonne, Illinois. 
ANL/ES•40. 180 P• 

Theriault, J.c., n.c. Lawrence and T. Platt. 1978. Spatial 
variability of phytoplankton turnover in relation to physical 
process in coastal environment. Limnol. Oceanogr. 23: 900 .. 911. 

Titman, D. and P. Kilham. 1976. Sinking in freshwater phytoplankton: 
Some ecological implications of cell hutrient status and 
physical mixing patterns. Limnol. Oceanogr. 21: 409-417. 



Table 1. Statistically significant relationships between wind and phytoplankton at the- offshore and 

shore intakes. Phytoplankton units are log10x+1 where x = organisms/ml. Wind speed tmits are

cm/sec. Wind stress tmits are grn/cm2/sec. 

Offshore 

Independent Variable 

Sine-velocity(north weight•1) 

Wind speed(north only) 

Wind stress(north only) 

Shore 

Sine-velocity(north weight=1) 

Wind speed(north only) 

Wind stress(north only) 

Wind stress 
1 

· Wind stress 1

Wind stress1 

1 Independent of wind direction

Dependent Variable 

Total phytoplankton 

Total phytoplankton 

Total phytoplankton 

Total phytoplankton 

Total phytoplankton 

Total phytoplankton 

Total phytoplankton(January) 

Fragilaria spp. (January) 

Tabellaria spp. (January) 

Regression Equation R2 Significance 

y = 2.93 + .0114x 4.2% P < .01 

y = 2.87 + .0006x 34.9% p .(. .os 

y = 2.998 + .OOB4X 41.9% ·p < .03

y = 3.0.+ .0143x 5.S'X, P < .01 

y = 2.9 + .0011x 42.1% p <. .os 

y = 3.1098 + .0962x 41.3% P < .03 

y = 2.91 + .t49x 49.9% P< .01 

y = 2.145 + .t25x 22.9% p < .os 

y .. 2.40 + .1433x 43.0% p <: .os 

"' w 



Fig. 1. Lake Michigan and the Chicago nearsho.re area showing 
the shore and offshore water intakes. 
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Fig. 2. Total phytoplankton and wind stress on days with 
north winds in 1975. x • organisms/ml. 
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Fig. 3. The relationship between Tabella.ria spp. 
and wind stresa at the shore intake in Lake Michigan, 
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