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ABSTRACT 

Conflicts between wildlife and human interests have increased in recent decades 

due to growing human populations and the resulting expansion of anthropogenic 

pressures into wildlife habitat.  Our overall objectives were to evaluate the the potential 

impacts of wildlife on transportation in Indiana and vice-versa.  The results presented in 

this final report summarize two aspects of our research:  the impact of automotive traffic 

on wildlife (“roadkill”; Part I), and the wildlife hazards present at general aviation 

airports around the state (“airstrike”; Part II).  The roadkill dataset indicated that at 13 

survey routes traversing 180 linear km of road, 11,068 animals were killed by traffic.  

These animals included mammals, birds, reptiles, and (mostly) amphibians.  GIS data 

indicates that nearby wetlands were typically associated with a high incidence of roadkill.  

While roadkills were detected in all months, there were obvious seasonal and weather 

related patterns in the data.  Most roadkills occurred from July through September, which 

was concurrent with peak temperatures and precipitation levels.  We highlight a variety 

of animal-friendly engineering options that can be used to effectively reduce encounters 

between wildlife and drivers, resulting in fewer accidents and less roadkill.  With regard 

to the airstrike dataset, airport habitats consisted mainly of short grass (40.2% of total 

airport area), soybean fields (10.3%), corn fields (9.5%), runway systems (8.1%), other 

development (6.6%), woodlots (5.2%), medium grass (4.8%), tall grass (4.6%), and 

hayfields (3.2%).  At least two types of wildlife attractants were present at each airport 

property, and the most common wildlife attractants included standing water (ephemeral), 

open culverts, crop fields, woodlot refugia, and gravel piles.  Proportion of airport 

perimeters fenced ranged from 7.5% to 100%, but most airport perimeters were >40% 

fenced.  Most airports with >25% of the perimeter enclosed by chain-link fencing had 

0.2-0.5 openings per 100 m of fence, with gaps and dig-holes being the most common 

openings.  Considering the most hazardous species, 0-92 white-tailed deer and 0-28 

coyotes were observed at individual airports combining all survey methods across a year.  

Of 16 bird species groups identified as hazardous to aircraft, American kestrel, 

blackbirds-starling, crows-ravens, mourning dove, shorebirds, sparrows, and swallows 

were present at 9-10 of the airport properties; geese, hawks (buteos), and vultures were 

present at 7-8 of the airport properties; and ducks, herons, and rock doves were present at 
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5-6.  Questionnaires indicated that pilots using focal airports were accustomed to wildlife 

hazards: 69% of respondents reported that they had altered aircraft operation due to 

wildlife within the past year, and 25% reported involvement in a wildlife strike during the 

past year.  Furthermore, 88% of respondents felt that wildlife populations at Indiana 

airports were at least “somewhat hazardous”.  Despite pilots’ awareness of wildlife 

hazards, less than 70% of respondents supported the use of fencing or wildlife deterrents, 

43% supported modification/elimination of wildlife habitat, and only 38% of respondents 

supported for lethal removal of wildlife on airport properties.  Hazards associated with 

deer and coyotes can be alleviated by installing suitable fencing; for airports with extant 

fences, care should be taken to monitor fences regularly and repair gaps as soon as they 

are discovered.  Presence of deer and coyotes inside airport fences should not be 

tolerated.  Birds are best managed by maintaining airport habitats in a manner that 

minimizes availability and/or quality of food, water, cover, and loafing sites for 

hazardous species.  Furthermore, several new technologies and refinements in techniques 

for wildlife damage management at airports have emerged recently and may benefit small 

airports, such as advancements in electric fencing and the use of dead bird effigies to 

repel some hazardous bird species.   

 

Key words:  wildlife, transportation, airstrike, roadkill, vertebrate, human/wildlife 

conflict 
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TECHNICAL SUMMARY 
Introduction 

Conflicts between wildlife and human interests have increased in recent decades in 

Indiana due to growing human populations and the resulting expansion of anthropogenic 

pressures into wildlife habitats.  One area of particular concern is vehicle-wildlife 

collisions.  Such collisions often result in human injury and monetary losses, as well as 

high rates of mortality to many wildlife populations.  In the research described herein, we 

assess the extent of vehicle-wildlife collisions in Indiana and evaluate management 

techniques designed to reduce them.  

 

This project is divided into two Parts:  Part I describes research on wildlife-automobile 

collisions; Part II describes research on wildlife-aircraft collisions.  Both types of 

collisions are costly to Indiana residents in terms of economic losses and human injuries 

and deaths.  Each Part is described separately in the context of the overall project. 

 

Collisions between wildlife and automotive traffic (roadkill) can be a major source of 

mortality in animal populations.  This is particularly troubling when the species impacted 

are of conservation concern.  Animals are killed by traffic for a number of reasons, 

including the simple dispersal of juveniles for inbreeding avoidance (foxes), expansive 

home range size (bobcats), or migration to breeding sites (salamanders).  Consider the 

potential impacts of roadkill on salamander population dynamics.  Worldwide, 

amphibians populations are declining for unknown reasons.  Migratory reptiles and 

amphibians such as tiger salamanders migrate to their breeding ponds en masse, often 

across state roads.  Roadkill mortality of just 20 gravid females has the potential to 

remove hundreds if not thousands of salamanders from the local population because each 

female produces (on average) more than 1000 eggs. 

 

Collisions between wildlife and aircraft (wildlife strikes) are a serious problem both for 

economic and safety reasons:  the civil aviation industry incurs over $300 million in 

damage from wildlife strikes every year, more than 100 people have died in the USA 

since 1960 in wildlife strikes, and over 350 people have been killed in wildlife strikes 
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worldwide since the inception of aviation 100 years ago.  Although mid-air collisions 

between aircraft and large soaring birds can be catastrophic, collisions in the airport 

environment are more problematic overall.  Commercial and general aviation airports, 

which commonly are located in close proximity to water bodies and large grasslands, 

often harbor large populations of birds, white-tailed deer, coyotes, and other wildlife that 

are potentially dangerous to aircraft.  The combination of abundant wildlife populations 

and frequent aircraft take-offs and landings at airports commonly leads to unacceptable 

levels of wildlife strike occurrences—over 90% of wildlife strikes to civil aircraft occur 

in the airport environment.  Moreover, some researchers contend that the wildlife strike 

problem will continue to grow because several wildlife species that are regularly involved 

in wildlife strikes at airports are increasing in number across their natural ranges (e.g., 

white-tailed deer, gulls, Canada geese) due to the extirpation of top predators and 

continued habitat fragmentation.  An increased understanding of the causal factors 

contributing to wildlife strikes at airports and the continued development of cost-effective 

solutions to reduce such collisions would potentially reduce human mortalities and 

substantial economic losses to the aviation industry. 

 

Findings 

There were several objectives for Part 1 (roadkill) of the proposed research.  First, we 

reviewed and summarized the literature relevant to the mitigation of animal roadkill.  

This includes the vast primary scientific literature and the so-called “gray” literature (e.g., 

government documents).  Second, we identified, characterized, and provided baseline 

data on 13 study sites that can be used as future evaluation sites.  Finally, we include 

practical recommendations as to how state and federal agencies can implement wildlife-

friendly engineering solutions (e.g., culverts). 

 

The major findings of Part I include:  1) most roadkill occurs near wetlands; 2) both 

common and rare species, including those of state conservation concern, are impacted 

negatively by roadkill; 3) the types of animals killed by traffic varies considerably across 

seasons and years, largely in response to specific attributes of an organism’s natural 
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history (e.g., timing of migration); and 4) the taxonomic identification of animals killed 

by traffic can be difficult, but could be addressed easily with DNA analyses. 

 

The objective for Part II (airstrike) was to evaluate the need for management actions to 

reduce wildlife strikes at general aviation airports throughout Indiana.  In essence, we 

conducted a Wildlife Hazard Assessment at a subset of general aviation airports 

throughout Indiana.  The research provides 1) a review of the wildlife strike literature, 2) 

an evaluation of wildlife hazards at 10 focal airports, and 3) recommendations for 

wildlife management actions at the 10 focal airports where wildlife hazards appear 

problematic.  

 

The major findings of Part II include 1) at least two types of wildlife attractants were 

present at each airport property surveyed, but most airports had five to seven types 

including standing water (ephemeral), open culverts, crop fields, woodlot refugia and 

gravel pits, 2) the proportion of airport perimeter fenced ranged from 7.5% to 100%, but 

most airports were >40% fenced; however, most airports with >25% perimeter enclosed 

by chain-link fencing had 0.2-0.5 openings per 100 meters of fence with dig holes and 

gaps being the most prevalent types of openings, 3) hazardous mammalian species 

observed included white-tailed deer and coyotes while hazardous avian species including 

American kestrel, blackbirds-starlings, crows-ravens, mourning doves, shorebirds, 

sparrows and swallows were observed at 9-10 airports; geese, hawks and vultures were 

observed at 7-8 airports; and ducks, herons and rock doves were  present at 5-6 airports, 

4) pilot questionnaires indicated that 69% of respondents had altered aircraft operation 

due to wildlife in the past year and 25% of respondents reported involvement in a wildlife 

strike in the past year; additionally, 88% of respondents felt that wildlife populations at 

Indiana airports were at least “somewhat hazardous”.  Our research demonstrated that 

despite the lack of published information concerning wildlife hazards at small airports, 

the potential for significant wildlife strikes at such sites in Indiana does exist.  Our habitat 

assessments, wildlife surveys, and pilot questionnaires all indicated that more emphasis 

should be given to the problem of wildlife strikes by airport personnel at general aviation 

airports in Indiana. 
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Implementation 

With regard to Part I (roadkill), our data indicate that roadkill in Indiana is largely 

associated with wetlands.  Thus, we recommend that engineers who are either renovating 

old roads or designing new ones near wetlands work with biologists to identify cost-

effective devices (e.g., wildlife-friendly culverts) that should reduce collisions between 

wildlife and vehicular traffic.  In order to groundtruth these recommendations, we suggest 

INDOT/JTRP consider installing roadkill-mitigation devices at one or more of our study 

sites because the key baseline data (reported herein) can be used for comparative 

purposes. 

 

With regard to Part II (airstrike), our data indicate that wildlife hazard management 

should be improved at all general aviation airports in Indiana.  Because most wildlife 

hazard problems at airports can be addressed with traditional methods, we recommend 

that airport personnel become familiar with established techniques, such as those 

summarized in Cleary and Dolbeer (1999).  Hazards associated with deer and coyotes 

could be alleviated by installing suitable fencing where funds are available.  For airports 

with extant fences, care should be taken to monitor fences regularly and repair gaps as 

soon as they are discovered.  Presence of deer and coyotes inside airport fences should 

not be tolerated.  Birds are best managed by maintaining airport habitats in a manner that 

minimizes availability and/or quality of food, water, cover, and loafing sites for 

hazardous species.  Furthermore, several new technologies and refinements in techniques 

for wildlife damage management at airports have emerged recently and may benefit small 

airports, and we suggest that INDOT/JTRP should investigate the utility of these new 

technologies - such as advancements in electric fencing and the use of dead bird effigies 

to repel some hazardous bird species.    
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CHAPTER 1.  VERTEBRATE MORTALITY ON INDIANA ROADWAYS 

 

EXECUTIVE SUMMARY 

Conflicts between wildlife and human interests have increased in recent decades 

due to growing human populations and the resulting expansion of anthropogenic 

pressures into wildlife habitat.  One area of particular concern is vehicle-wildlife 

collisions.  Such collisions often result in human injury and monetary losses, as well as 

high rates of mortality to many wildlife species.  Our overall objectives included 

quantifying vertebrate mortality on a variety of Indiana roadways, incorporating these 

empirical data into a GIS database to identify habitat characteristics of roads with high 

vertebrate mortality, reviewing/summarizing the current roadkill mitigation literature, and 

recommending mitigation approaches that may be most appropriate for Indiana 

roadways. 

Survey routes were chosen using maps and through consultations with regional 

biologists; the 13 chosen routes represent a variety of geographic and anthropogenic 

conditions covering a total of 180 linear km.  Routes were divided into 2 categories, local 

and remote.  Local routes were surveyed biweekly throughout the year while remote 

routes were surveyed over each of the 4 seasons.  All carcass locations within the road 

shoulders were recorded using GPS and then marked or removed to avoid recounting.  

We recorded over 11,000 road mortality events across all 13 of our survey routes.  At 

least 80 species were represented among the mortalities across all 13 routes and of these, 

91% were herps, 7% mammals, and 2% birds.  Of the >11,000 roadkills, 10,515 were 

detected on the local routes and were comprised of 95% herps, 3% mammals, and 2% 

birds. 
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While roadkills were detected in all months, there were obvious seasonal and 

weather related patterns in the data.  Most roadkills occurred from July through 

September which was concurrent with peak temperatures and precipitation levels.  While 

habitat variables differed across all 4 local routes, water was a significant factor in high 

vertebrate mortality at both the Lindberg Rd and SR 26 routes. 

INTRODUCTION 

The expansion of humans into the wilderness is not a new phenomenon.  Humans 

have been steadily intensifying their impact on the wild areas of the world, especially 

since the advent of large-scale automobile manufacturing in the early 20th century.  Areas 

that formerly saw only horse and wagon traffic are now inundated with automobiles, 

because many formerly remote places can now be accessed by the public.  Moreover, the 

increase in personal vehicles required a well-developed road system and increased 

resource extraction which has led to increased contact and conflict between humans and 

wildlife.  The 6.2 million km system of public roads, used by 200 million vehicles, links 

essentially every local area in the United States (National Research Council 1997).  Road 

corridors, defined as the road surface plus its maintained roadsides and parallel vegetated 

strips, cover about 1% of the land, a combined area equivalent to South Carolina (Forman 

2000). 

Many ecological effects of roads on species, soils, and water have been identified, 

with effects varying in distance outward from meters to kilometers (Ellenberg et al. 1991, 

Forman 1995).  These “road-effect zones” impact an estimated 15-20% of the United 

States (Forman and Alexander 1998).  While roads are an important part of the 

infrastructure and can provide some ecological benefits such as maintenance of grassland 
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plants in intense agricultural areas (Forman 2000), they can also present several 

ecological problems.  In instances where exotic plant species are planted along roads to 

help combat erosion, snow accumulation, and enhance aesthetics, they have the potential 

to spread into nearby natural ecosystems (Forman 1995).  Runoff pollutants from roads 

(primarily deicing salts and heavy metals) can alter soil chemistry, be absorbed by plants, 

and affect stream ecosystems (Forman and Alexander 1998).  Roads can also act as both 

physical and biological barriers to many wildlife species (Jackson 2000, Forman and 

Alexander 1998).  Likewise, roads can be direct sources of wildlife mortality and in some 

instances, act as a predatory mechanism (Langton 1989). 

Wildlife/vehicle collisions 

Collisions with automotive traffic can be a major source of mortality in animal 

populations (Romin and Bissonette 1996, Trombulak and Frissell 2000, Gibbs and 

Shriver 2002).  Lalo (1987) estimated vertebrate mortality on United States roads at 1 

million individuals per day.  For many species, road mortality can serve as a population-

limiting factor as their foraging and dispersal behaviors put them at risk of being struck 

on roadways.  In Launceston, Australia, annual road mortality of the brushtail possum 

(Trichosurus vulpecula) exceeds the local birth rate (Statham and Statham 1997) and 

wildlife/vehicle collisions are the primary cause of death in moose (Alces alces) in the 

Kenai National Wildlife Refuge, Alaska (Bangs et al. 1989).  Road mortality can be 

especially destructive to carnivores, which normally have low reproductive rates, low 

population densities, and large home ranges (Ruediger 1996).  For example, road 

mortality is the third-highest cause of death for wolves in Minnesota (Fuller 1989). 
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While roadkills may not affect abundant species, they can have a significant 

impact on populations of threatened or endangered species.  Roadkills are a significant 

source of mortality for the endangered population of the eastern barred bandicoot 

(Perameles gunnii) in Victoria, Australia (Brown 1989) and are considered a major threat 

to the recovery and viability of the endangered Florida panther (Felis concolor coryi) 

(Foster and Humphrey 1995, Evink et al. 1996).  Road mortality has also served as a 

limiting factor in the recovery of the American crocodile (Crocodylus acutus; Kushlan 

1988) and as a contributor to the endangerment of the prairie garter snake (Thamnopsis 

radix radix) (Dalrymple and Reichenbach 1984). 

From the human perspective, animal road mortality can pose both safety and 

economic issues.  Collisions with animals can result in serious injury or even death to 

motorists.  In addition, drivers may attempt to avoid animals on the road, subsequently 

endangering themselves and others.  Groot Bruinderink and Hazebroek (1996) estimated 

the annual number of collisions with ungulates in Europe at 507,000 resulting in 300 

human fatalities, 30,000 injuries, and $1 billion (U.S.) in damages.  An estimated 1.5 

million animal-vehicle collisions involving deer (Odocoileus spp.) alone occur annually 

in the United States (Conover et al. 1995).  Estimated damage to vehicles in these 

collisions exceeds $1.1 billion in total and approximately $1,500 per collision (Conover 

et al. 1995).  Conover et al. (1995) reported that deer/vehicle collisions alone resulted in 

over 29,000 human injuries and over 200 fatalities in the United States.  Overall, human 

injury results from approximately 4% of collisions involving medium-sized animals 

(Conover et al. 1995) and 14%-18% of collisions with larger animals such as moose 
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(Farrell et al. 1996).  These figures do not account for losses due to collisions with other 

wildlife and only represent reported animal-vehicle collisions. 

Roadkill and herpetofauna 

While many road mortality studies have centered on large carnivores and 

ungulates, the effects of roads and roadkill are also felt by many reptiles and amphibians 

(herpetofauna, herps).  Over the last decade, amphibian populations have been declining 

worldwide (Blaustein and Wake 1990, Wake 1991, Fahrig et al. 1995) and these declines 

are often associated with some type of habitat modification such as fragmentation and/or 

road expansion (Fahrig et al. 1995, Vos 1997).  In fact, even though amphibians may tend 

to avoid roads, a growing literature suggests that the greatest transportation impact on 

amphibians is mortality associated with roadkill (Fahrig et al. 1995, Ashley and Robinson 

1996, Vos 1997).  In Australia, Ehmann and Cogger (1985) estimated the annual 

mortality of herps on roads at 5 million individuals.  Road mortality is especially 

prevalent in areas where roads intersect wetlands.  In a 4 year period, Ashley and 

Robinson (1996) observed >32,000 individual animals (92% amphibians) killed along a 

3.6km stretch of road in Ontario.  Herpetofaunal road mortality can have significant 

impacts on populations, such as altering age and sex ratios, and can eventually lead to 

local extinctions (Langton 1989, Vos and Chardon 1998).  Moreover, reduced reptile and 

amphibian populations may not have to range as far for resources, possibly affecting the 

distribution and abundance of the general plant and animal community (Langton 1989). 

Another reason that road mortality is a key concern for herpetofauna can be found 

in their biology.  Herps generally move slower than mammals and birds, making them 

more susceptible to road mortality.  Furthermore, many herp species migrate during their 
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breeding seasons.  When amphibians must migrate across roads to reach breeding ponds, 

mortality of breeding adults can reach 20%-40% (Langton 1989).  With female 

ambystomatid salamanders producing (on average) over 1,000 eggs per individual and 

anuran egg numbers ranging from several hundred (in smaller hylids) to several thousand 

(in larger ranids and bufonids) (Wright and Wright 1949, Harding 1997), the road 

mortality of migrating gravid females has the potential to remove tens or even hundreds 

of new salamanders, frogs, and toads from the population.  The impact of road mortality 

on populations of reptile species such as snapping turtles (Chelydra serpentina) may be 

detrimental due to their inherent life-history traits, e.g., low annual recruitment and long 

life expectancy (Galbraith and Brooks 1987, Galbraith et al. 1989, Haxton 2000).  

Additionally, many reptile species bask during the warmth of the day to increase their 

body temperatures and metabolisms.  This thermoregulatory behavior can bring reptiles 

into a position of imminent danger. 

Roads as barriers 

In many instances, roads not only serve as direct sources of mortality but also as 

barriers to wildlife species (Forman and Alexander 1998, Jackson 2000).  For some 

species, such as grey wolves (Canis lupus) and pronghorn antelope (Antilocapra 

americana), movements and ranges can be limited by the presence of roads.  Jensen et al. 

(1986) and Thurber et al. (1994) found that gray wolves will not establish themselves in 

areas with road densities above certain region-specific thresholds.  Black bears (Ursus 

americanus) and grizzly bears (Ursus horribilis) regularly shift their home ranges away 

from areas of high road density (McClellan and Shackelton 1988, Brody and Pelton 

1989) and pronghorn antelope likewise show an aversion to roads (Bruns 1977).  
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Similarly, herp species are reluctant to cross roads (Fahrig et al. 1995) as they may 

represent both physical and biological barriers (Mader 1984).  Gibbs (1998) found that 

roads significantly hindered amphibian movement. 

The barrier effect of roads can also play an important role in the population 

structure and gene flow of a species.  For example, turtle populations are susceptible to 

decline due to increased mortality of reproductive adults (Brooks et al. 1991).  Turtle life 

history is characterized by low annual recruitment rates, high adult survival rates, and 

delayed sexual maturity (Congdon et al. 1993, 1994).  Steen and Gibbs (2004) found that 

high road density was associated with male-biased populations of painted turtles 

(Chrysemys picta) and snapping turtles, primarily due to the disproportionate level of 

road mortality among breeding females.  Reh and Seitz (1990) found significantly lower 

levels of genetic heterozygosity and polymorphism among populations of common frogs 

(Rana temporaria) separated by roads in Germany. 

PROBLEM STATEMENT  

Indiana is composed primarily of a highly fragmented, agriculturally dominated 

landscape consisting of over 150,000 km of roads, with the Indiana Department of 

Transportation (INDOT) managing ~17,000 km of these (INDOT website).  The 

biological effects of this road network are not well-understood; however, the combination 

of high habitat fragmentation and high road density may have detrimental effects on 

many wildlife species including herpetofauna.  Presently, outside of raccoon roadkill 

surveys (for population estimates) conducted by the Indiana Department of Natural 

Resources (IDNR), there is no other annual roadkill survey nor is there any multi-species 

road mortality index for the state. 
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Wildlife road mortality is a serious issue both ecologically and sociologically.  As 

scientists, we have an obligation to try to understand these issues and recommend 

responsible solutions.  Understanding the effects of roadways on herpetofauna and other 

species of wildlife can help reduce road mortality and identify mitigation solutions for 

“conservation engineers” and public policy makers. 

OBJECTIVES 

Our research had 2 objectives: 1) identify, characterize, and evaluate roadkill sites 

throughout Indiana and incorporate these empirical data into a Geographical Information 

System (GIS) database to identify affected species and habitat characteristics of roads 

with high vertebrate mortality (with an emphasis on herpetofauna) and 2) review and 

summarize the current roadkill mitigation literature and offer suggestions to INDOT as to 

which measures may be most appropriate for Indiana roadways.  Two questions that we 

hoped to address through analyses of these data are: (1) which habitat types have the 

greatest influence on road mortality, and (2) which species are most often encountered as 

roadkill? 

METHODS 

Survey Routes 

Identifying potential roadkill survey routes throughout Indiana was done using 

physical maps and consultations with regional biologists.  We primarily focused on state 

and U.S. roads as these are under more direct control of INDOT.  Survey routes varied in 

length and were chosen to represent a mixture of geographic and anthropologic 

conditions (e.g., upland vs. wetland, rural vs. suburban) (Tables 1 and 2).  Survey routes 

were also chosen based on safety and accessibility (e.g. available shoulder, visibility).  
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Overall, 13 survey routes (4 local, 9 remote) were selected across the state covering a 

total of 180 linear km (Figures 1 and 2).  Local survey routes were located close to 

Purdue and <5km in length, to allow for more thorough sampling over a longer period of 

time.  For logistical reasons, remote sites were determined in conjunction with the 

statewide wildlife/aircraft collision study conducted by Purdue University and were 

generally >10km in length to allow for more road sampling per trip. 

Roadkill Sampling 

Roadkill detection surveys were performed on all selected routes.  Routes were 

driven at low speeds (<40km/h) to allow for better detection of roadkills.  In some 

instances, routes were partially or entirely walked for safety reasons (e.g., lack of a 

vehicle-accessible shoulder) and/or amounts of kills in a particular area.  Local routes 

were surveyed biweekly from March 8, 2005 – July 31, 2006 for a total of 124 surveys 

per route.  This intensive sampling of local routes promoted better and more frequent 

detection of smaller carcasses, e.g., tiger salamanders (Ambystoma tigrinum) during 

breeding migrations.  We sampled each remote route twice during each of 4 seasons 

(spring 2005, summer 2005, fall 2005, and winter 2006) for a total of 8 visits per route in 

conjunction with the wildlife/aircraft collision schedule.  Surveys accounted for all 

carcasses found within the road shoulders.  All roadkills were identified to species 

(whenever possible), marked or removed to avoid recounting, and their locations were 

entered into a Trimble GeoXT mobile GPS/GIS system.  Removed carcasses in excellent 

condition were donated to the vertebrate collection at Purdue University. 

Because of the low speeds necessary for effective surveying and surveyors’ close 

proximity to roads when marking individual carcasses, safety was a top priority.  Safety 
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orientation was completed via an on-line video from the Joint Transportation Research 

Program at Purdue.  All surveying vehicles were equipped with amber beacons and 

flashers and any surveyor exiting the vehicle along a route was required to wear a high 

visibility safety vest.  In addition, signs were posted when necessary to alert oncoming 

traffic of surveying activity. 

Survey Route GIS  

Using ArcGIS9, a database was developed for all 13 survey routes. We referred to 

aerial photographs obtained from the Indiana Spatial Data Service 

(http://www.indiana.edu/~gisdata/) to aid in interpretation of the spatial extent and 

location of habitat patches.  The sid. file for each raster download was added to an 

ArcMap project and served as a base map for digitizing survey route buffers and habitat 

types.  We applied a 100m buffer (from the center of the road) parallel to each survey 

route and overlaid it onto its corresponding aerial photo.  The 100m buffer was chosen as 

it would include the critical habitat immediately adjacent to each survey route.  

Moreover, habitat management and mitigation measures would be more likely 

implemented nearer to the road.  We created 8 land cover feature classes and then 

digitized those features within the buffer based on my interpretation of landscape features 

visible on the aerial imagery.  Land cover feature classes included roads, grass/shrub 

ditches, agriculture/pasture, forest/woodlot, urban/recreational grasses, urban/residential, 

water/wetlands, and grassland/shrublands.  We defined roads as the amount of paved 

roads within the buffer.  Grass/shrub ditches consisted of roadside and field drainages.  

Agriculture/pasture habitat was defined as areas containing row-crop fields, hay and 

alfalfa, and pasture areas for livestock.  We defined forest/woodlot habitat as areas 
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consisting of wooded areas having a closed canopy.  Urban/recreational grass areas were 

defined by large, maintained open areas that were obviously used routinely (e.g., golf 

courses and athletic fields) excluding lawns immediately surrounding residences.  

Urban/residential habitat consisted of developed areas (including lawns).  We defined 

water/wetlands as areas of open water, streams, swamps, and bogs.  Grassland/shrubland 

habitat consisted of areas of grasses that did not appear to be pasture, lawn, recreational 

field, or wetland and non-wetland habitat consisting of a mix of grass, shrubs, and young 

trees.  Following completion of digitizing habitat classes, we used the Calculate Area tool 

in ArcMap to determine the area (m2) of each habitat polygon per 100m section.  Polygon 

areas were then summed for each habitat class and converted to a percentage per road 

section. 

Other data collected for each route were presence/ absence of culverts, 

underpasses, and overpasses, road aspect (straight or curved), number of lanes, width, 

and posted speed limits (Table 3).  Traffic volume data for survey routes was acquired 

through INDOT but since it was not consistent (results and updates were from different 

years) it was excluded from the habitat analysis.  Weather data was obtained from the 

Indiana State Climate Office (http://shadow.agry.purdue.edu/sc.index.html) and we 

calculated the monthly mean temperature and monthly total precipitation levels for the 

analysis.  Roadkill location data points were downloaded to the computer using 

TerraSync and GPS Pathfinder Office software (Trimble 2003) then projected on their 

respective routes.  Each route along with its buffer was divided into 100m sections 

(Smith and Dodd 2003) essentially constructing a 100m x 200m analysis “window” from 
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which the number of roadkills and the corresponding habitat composition and road 

characteristics within each section could be determined (Figures 3, 4, 5, 6). 

Habitat Analysis 

At present, habitat analyses have been conducted for the local routes (n = 4) only 

as they were sampled for roadkill the most frequently.  Moreover the road characteristics 

(e.g. aspect, speed limits) were generally homogenous for each route; therefore they were 

excluded from the analyses.  Therefore, we examined the spatial distribution of road 

mortality events and its intensity along all local routes to determine which habitat 

variable most influenced roadkill numbers.  Each section on a route represented one 

sampling unit with the response variable being the number of roadkills and the predictor 

variables consisting of the aforementioned habitat variables.  Using ArcMap, we were 

able to determine the exact number of kills and the composition of the habitat per section.  

We then used SAS 9.1 (SAS Institute 2002) to perform stepwise linear regressions to 

determine which habitat variables were the best predictors of roadkill for each route.  The 

data was log-transformed in instances of assumption violation.  Furthermore, residuals of 

highly correlated habitat variables were used in the regressions rather than excluding 

them.  This allowed us to still determine which habitat types were most significant in 

predicting roadkill.  Road mortality data also was indexed to determine which species are 

most often killed along the survey routes. 

RESULTS 
 
We have chosen to report and discuss results primarily from the more intensive local 

surveys due to differences in the sampling regimes and data sets between the local and 

remote routes. 
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Roadkill Sampling 

From March 8, 2005-July 31, 2006, We recorded 11,068 road mortality events 

across all 13 survey routes (Table 4).  A total of 72 surveys encompassing 1268km were 

conducted across 9 remote routes while 496 surveys traveling a total of 1488km were 

conducted at the local routes (n = 4).  At least 80 species were represented among the 

mortalities across all 13 routes and of these, 91% were herps, 7% mammals, and 2% birds 

(Table 5).  For the remote routes, the most common herp, mammal, and bird species were 

painted turtles (Chrysemys picta, n = 12), opossums (Didelphis virginiana, n = 179) and 

raccoons (Procyon lotor, n = 134), and American robins (Turdus migratorius, n = 9) 

respectively.  The remote routes with the highest incidence of roadkill were the DeKalb 

route (n = 133; 8.3% herps, 88% mammals, 3.7% birds) and the Richmond route (n = 72; 

16.7% herps, 68% mammals, 15.3% birds). 

Of the >11,000 roadkills, 10,515 were detected on the local routes and were 

comprised of 95% herps, 3% mammals, and 2% birds (Table 6).  The most common herp 

species at the local level were bullfrogs (Rana catesbeiana, n = 1,671), green frogs (Rana 

clamitans, n = 172), and tiger salamanders (Ambystoma tigrinum, n = 142).  The most 

frequent mammal species were opossums (n = 79) and raccoons (n = 43).  Chimney 

swifts (Chaetura pelagica, n = 36) and American robins (n = 18) represented the highest 

numbers of avian roadkill. 

The local routes with the highest incidence of roadkill were Lindberg Rd (n = 

8,176) with herpetofauna representing 98% of all roadkills, mammals 0.9%, and birds 

1.1% and the SR 26 route (n = 1,761) of which 94% were herps, 4.1% mammals, and 

1.9% birds.  The kill total for the US 231 route was 346, with 67% herps, 23% mammals, 
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and 10% birds. South River Rd totaled 232 roadkills of which 21% were herps, 57% were 

mammals, and 22% were birds. 

Weather and Habitat Analysis 

 Average monthly temperatures and monthly precipitation totals were plotted 

against total monthly roadkill numbers for all local routes (Figure 7).  While roadkills 

were detected in all months, there were obvious seasonal and weather related patterns in 

the data.  Most roadkills occurred from July through September which was concurrent 

with peak temperatures and precipitation levels.  A similar pattern was witnessed at each 

individual local route (Figures 8, 9, 10, 11). 

 A summary of the results of habitat variable effects on roadkill numbers for each 

local route can be found in Table 7.  For the SR 26 route, water/wetland and forest 

habitats were significant predictors of roadkill numbers.  Grass/shrub ditch habitat was a 

significant predictor of roadkill numbers along the South River Rd route.  Along the US 

231 route, urban/residential habitat had the biggest influence on roadkill.  For the 

Lindberg Rd route, 5 of the 6 habitat types (urban/recreational, water/wetlands, 

urban/residential, forest/woodlot, and roads) found within the 100m buffer were all found 

to be significant predictors of roadkill numbers. 

DISCUSSION 

 While there have been other road mortality studies conducted throughout the 

world, there have been no similar ones in Indiana so, unfortunately, there are no other 

records with which to compare our results.  Ashley and Robinson (1996) surveyed a 

3.6km section of road that bisected a wetland in Ontario, Canada over two 2-year periods 

and recorded > 32,000 road mortalities.  Of those 95% were reptiles and amphibians.  In 
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one year, Smith and Dodd (2003) counted > 1,800 mortalities along a 3.2km section of 

highway in Florida and of those 91% were herpetofauna.  There are obvious differences 

in the Ontario and Florida studies when compared to ours, most notably the scope.  

Where these prior studies focused on a single stretch of road, we looked at multiple road 

segments both close to Purdue University and throughout the state.  Even though this led 

to a reduced number of surveys for the state-wide routes, the intensive local surveys 

produced very similar herpetofauna roadkill numbers (all local routes = 95%) to the 

aforementioned studies.  Herpetofaunal mortalities also compare favorably to the Ashley 

and Robinson and Smith and Dodd studies; Lindberg Rd (98%) and SR 26 (94%). 

 Live animals were not included in the data set, but general observations of live 

animals in the presence of the survey routes were often noted.  Canada geese (Branta 

canadensis) were often seen milling about at both the Lindberg Rd and SR 26 routes.  In 

fact, geese were so prevalent at Lindberg Rd during the spring and summer that they 

often caused traffic to stop while they crossed the road (Figure 12). 

Lindberg Rd 

The Lindberg Rd survey route, by way of its large number of amphibian road 

mortality, became a focal point of the study (Figure 14).  Lindberg Rd, located in West 

Lafayette, bisects the Celery Bog Nature Preserve.  The bog is surrounded by human 

development of various types; a golf course, shopping center, apartment complexes, and 

residential subdivisions.  Prior to development, the habitat surrounding the bog was 

mostly agricultural fields.  The road through the bog is a commonly used thoroughfare 

for commuters and college students and a convenient way to get from the western end of 

the Purdue campus to many West Lafayette amenities. 
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Beginning in March 2005 we recorded >7,900 frogs (Rana sp.) killed on this 

1.8km stretch of road.  These may be underestimates, as many individual herp specimens 

were only identifiable to genus due to carcass deterioration, especially during the summer 

months.  For example, over 50% of the mortalities were frogs from the genus Rana 

including the northern leopard frog (Rana pipiens), a species of special concern in 

Indiana, but not all frogs could be identified to species.  Twenty-nine leopard frogs were 

found on the road over the course of the study and several were heard calling from the 

bog area during early spring surveys.  Bullfrogs were the most frequently recorded, 

identifiable frog species.  They also were the most often species heard and seen alive in 

the bog.  Bullfrogs are prolific breeders, often laying several thousands of eggs per 

female (Wright and Wright 1949, Harding 1997).  This may explain the large numbers of 

bullfrogs that were recorded on the road.  They are also voracious predators that will not 

only out-compete other species but also prey on them which may also explain the 

disproportionate number of bullfrogs to other frog species.  Many of the frogs identified 

as Rana spp. may indeed have been bullfrogs but that could not be determined with any 

certainty. 

While anurans made up the bulk of road mortality on Lindberg Rd, there were 

some other notable mortality events.  For example, between 17 February 2006 and 7 

April 2006 we recorded 30 tiger salamanders during their spring migration to breeding 

areas and during a 46 day period between April and June 2006, 34 chimney swifts, most 

likely migrants, were found dead on the route.  Most swift carcasses were located on the 

sections of road bisecting the bog and were probably a result of low-flying birds striking 

vehicles while pursuing insects (Figure 13).  While these numbers may not seem large, 
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consider that up to these points in time neither species had been recorded during prior 

surveys.  If migrating animals use the bog as a stopover or breeding area they could 

potentially be put in a position of imminent danger. 

The Lindberg Rd habitat analysis model found 5 of the 6 habitat types present 

(urban/recreational grasses, water/wetlands, urban/residential, forest/woodlot, and roads) 

to be significant roadkill predictors and this is most likely due to the high number and 

distribution of kills over the majority of the route.  Water was one of the significant 

factors when determining the number of roadkills per 100m section of road and this 

makes sense when considering the high numbers of herps that were recorded along those 

routes.  The bog notwithstanding, there are several other sources of water such as 

apartment complex retention ponds and golf course water “hazards” that could potentially 

be used by various herp species as breeding, cover, and feeding areas.  This in fact could 

be the reason that herp carcasses were found along the entire route. 

As with the other local routes, weather and season were an influence on roadkill 

numbers.  Roadkills along the route were highest during the late summer months and 

peaked in September.  The mortality patterns of amphibians in response to seasonal 

changes can be explained by the life histories of the various species recorded.  There 

were several newly metamorphosed subadult carcasses recorded during this period which 

may be due to dispersal and may have inflated numbers (Figure 15).  Ashley and 

Robinson (1996) recorded the monthly road mortalities of 4 species of anurans (northern 

leopard frogs, bullfrogs, green frogs, and American toads) and discovered distinct 

patterns for each species.  Leopard frog mortalities were unimodal with the peak being in 

late summer.  Bullfrog, green frog, and American toad mortalities were bimodal having 
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peaks both in mid-spring and late summer.  Smith and Dodd (2003) discovered similar 

patterns in their roadkill and weather/season data.  They recorded high kill rates for frogs 

in July and August and an overall higher number of roadkills throughout the summer 

months. 

SR 26 

 The SR 26 route is a 2-lane highway located in rural western Tippecanoe County.  

The route was chosen because of a number of tiger salamanders that were discovered 

killed on the road during their spring breeding migration 2 years prior to our study and 

indeed were found again (n = 106).  The overall number of roadkills along the SR 26 

route (n = 1761) were considerably less than that of the Lindberg Rd route.  Nevertheless, 

it is still quite spectacular considering the amount of time the route was sampled.  Again, 

bullfrogs were the predominant herp species but there was a higher overall diversity of 

herp species (n = 16) found along this route than any other local route.  This may be 

because of the presence of all 8 habitat types within the 100m buffer and their ability to 

support a variety of species.  As with the Lindberg Rd route, water was a significant 

factor in predicting roadkills.  There is a large wetland located in the center and 

immediate south of the road with upland forested habitat directly across from it.  This 

mix of upland and water is probably the reason tiger salamanders were killed along that 

stretch of road as it provides both breeding and over-wintering areas.  Another similarity 

to Lindberg Rd is the multiple sources of water along the route in the form of farm ponds 

and creeks.  Green frogs preferred the sections near the creeks while bullfrogs were 

prevalent in areas near the ponds and wetland.  As mentioned before, weather and season 
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were an influence on roadkill numbers.  Roadkills along the route were highest during the 

summer months but unlike Lindberg Rd peaked in July. 

Several issues arose during our project which may be pertinent to any similar 

future or follow-up projects.  Sampling during the first year did not begin until March 

therefore many of the early salamander and anuran migrations may have been missed.  

However, during the second year of sampling we were able to document several early 

migrations such as tiger salamanders and northern leopard frogs.  Detection and positive 

identification of carcasses could be extremely taxing for the surveyors.  Small species 

such as spring peepers were very hard to locate and were undoubtedly missed on 

occasion.  Carcass degradation, especially for herps during the summer months, made 

identification difficult.  Moreover, some carcasses may have been eaten by scavengers 

prior to marking and some animals may have left the roadside after being hit.  

Infrequency of remote surveys did not allow for a true measure of yearly roadkill 

numbers along those routes and certainly contributed to a reduced number of recorded 

herpetofauna.  In addition, these differences made comparing results between the two 

difficult.  Weather can always be a factor and on days of bad weather visibility was 

extremely limited.  Lastly, nature in its own right can be somewhat fickle meaning what 

is true today may not be tomorrow.  At the time of this report, herpetofauna roadkill 

numbers on Lindberg Rd and SR 26 were down when comparing 2005 and 2006 numbers 

and the number of live anurans noticed either audibly or visually by surveyors also had 

decreased.  This raises new questions about the high levels of roadkill of 2005.  Was 

2005 simply a “blip” on the roadkill radar or are there other environmental and biological 

factors lending to the perceived decrease in herp activity? 
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MANAGEMENT CONSIDERATIONS 

 Based on the results presented here, there are some obvious areas of wildlife road 

mortality that need attention most notably areas that have roads bisecting or in close 

proximity to wetlands.  Connectivity of habitat and permeability of road systems are 

important factors to consider when developing roadkill mitigation systems.  

Unfortunately, there is no panacea for mitigating roadkill; what works for one species or 

suite of species may not be the best option for others.  There are, however, various 

measures that may be more effective for the areas of highest road mortality (i.e. Lindberg 

Rd and SR 26) many of which are discussed in the mitigation literature review section of 

this report.  To reiterate, we will mention some of the more feasible possibilities here. 

 Wildlife underpasses, also known as wildlife bridges, are large underpasses that 

provide a relatively unconfined passage for wildlife (Jackson and Griffin 2000).  Where 

roads cross over water or other roads, bridges can provide a passageway for many 

wildlife species, especially those that use riparian corridors.  In situations where 

underpasses may hold excessive amounts of water, ledges can be incorporated into the 

designs to allow animal passage. 

Pipe culverts are relatively small structures (1-6ft. diameter) made of concrete, 

smooth steel, or corrugated metal designed to carry water under roads.  Europe has led 

the way in implementing smaller pipe-style culverts, also referred to as “amphibian 

tunnels” (Forman et al. 2003).  Box culverts, generally larger than pipe culverts, are also 

used to allow water to pass under roads but unlike pipe culverts usually remain dry 

except in periods of heavy run off.  Culverts may be used by a variety of wildlife species 

(Rodriguez et al. 1996, Yanes et al. 1995, Clevenger and Waltho 2000).  Kaye et al. 
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(2005) reported that the use of a box culvert under a highway improvement project in 

Massachusetts allowed the crossing of spotted turtles (Clemmys guttata, a state threatened 

species) between two turtle habitats. Clevenger et al. (2001) monitored 36 culverts along 

the Trans-Canada highway and found a total of 618 crossings by a minimum of 9 species, 

with an average of 2.8 species at each culvert.  In Australia, Taylor and Goldingay (2003) 

recorded 17 different vertebrate species using purpose-built fauna culverts in combination 

with exclusion fence under the Pacific Highway.  The use of a culvert system in 

conjunction with a barrier wall reduced roadkill numbers along US 441 in the Paynes 

Prairie State Preserve, Florida, by 93.5% (Dodd 2004).  The highway bisects a wetland 

complex and prior to construction and during a 1-year roadkill survey 2,411 roadkills 

were detected. That number was reduced to 158 animals after construction of the barrier 

wall/culvert system. 

Systems similar to these may be effective for areas of high road mortality in 

Indiana such as Lindberg Rd or SR 26.  They would allow road permeability, promote 

habitat connectivity and may be able to be instituted by modifying existing culverts and 

underpasses rather than building new ones.  Mitigation systems should be taken into 

consideration during the planning stage of new road construction thereby factoring in the 

cost upfront.  However, mitigation measures need to be placed in areas where they will 

be most effective; therefore additional road mortality studies such as this one need to be 

implemented in other parts of the state to verify additional roadkill hotspots.  Moreover 

consistent post-construction monitoring will be needed to verify mitigation effectiveness 

and maintain structures. 
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Table 1. Local study sites and survey routes in Tippecanoe County, Indiana with 
approximate distances and site descriptions. 

Site Survey 
Route 

Length 
(km) 

Site 
Description 

Road 
Characteristics 

Urbanization 
level 

Lindberg Rd. Lindberg Rd. 
from US 231 
to McCormick 
Rd. 

1.8 wetland 
surrounded by 
golf course and 
bisected by 2-lane 
paved road 

Straight, 2-lane 
paved road 

w/turning lane in 
center; no shoulder 
on south side, bike 
lane on north side; 

30MPH 

urban 

SR 26 SR 26 from 
750W to 
CR925W 

2.9 
 

wetland 
surrounded by 
mixed hardwood 
woodlots and 
agricultural fields 

Straight, semi-
hilly, 2-lane paved 

road; very little 
shoulder, some 

roadside ditches; 
50-55MPH 

rural 

South River 
Rd. 

S. River Rd. 
from US 231 
bypass to 
CR300W 

3.9 river bottom/flood 
plain, mixed 
hardwood 
woodlots near 
Purdue airport 

Few curves, 2-lane 
paved road; little 

shoulder; 40-
45MPH 

suburban 

US 231 US 231 from 
US 52 to 
CR600N 

3.4 primarily 
agricultural with 
semi-wet ditch 
system 

Straight, 2-lane 
paved road, large 
shoulder; 55MPH 

rural 
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Table 2.  Remote study sites and survey routes throughout Indiana in conjunction with 
wildlife/aircraft collision study (fig. 2) with approximate distances and site descriptions. 

Site Survey 
Route 

Length 
(km) 

Site 
Description 

Road 
Characteristics 

Urbanization 
level 

1. South Bend SR 4 from 
US31 to SR 
104 

25.7 Potato Creek 
SP; mixed 
hardwoods near 
park, mostly ag 
fields; SR4 
bisects wetland 

2-lane paved road; 
shoulder varies; 

45-55MPH 

suburban-rural 

2. DeKalb Old State 
Hwy 47 
from 11A 
Rd to Popp 
Rd 

16.1 Primarily ag 
fields; route 
crosses 3 small 
creeks 

2-lane paved road; 
portions of large 

shoulder; 55MPH 

rural 

3. Warsaw SR 5 from 
CR 750N to 
US 33 

19.3 Tri-County 
FWA; route 
adjacent to 4 
large lakes; 
mostly open/ag 
fields 

2-lane paved road; 
little shoulder; 45-

55MPH 

urban/suburban-
rural 

5. Anderson CR 200E 
(old SR 67) 
from US 36 
to CR 500E 

14.7 Mounds SP; 
mostly open/ag 
fields 

2-lane paved road; 
shoulder varies; 

45-55MPH 

urban-suburban-
rural 

6. Richmond SR 101 from 
Fosdick Rd. 
to Golden 
Rd. 

17.4 Brookville Lake 
Project; some 
mixed 
hardwoods, 
mostly open/ag 
fields 

2-lane paved road; 
portions of large 

shoulder; 55MPH 

suburban-rural 

7. Greencastle SR 59 from 
CR 720S to 
US 36;  US 
36 from SR 
59 to CR 
850W 

19.6 Cecil M. 
Harden Lake 
Project; mixed 
hardwoods to ag 
fields 

2-lane paved road, 
shoulder varies, 

45-55MPH 

suburban-rural 

8. Greenwood SR 135 from 
SR 44 to SR 
144; SR 144 
to SR 44 

15.6 Mixed 
hardwoods and 
open/ag fields; 
route crosses 
several creeks  

2-lane paved road; 
portions of large 

shoulder; 45-
55MPH 

urban-rural 

9. Sellersburg  SR 160 from 
I 65 to Blue 
River Rd 

10.5 Clark State 
Forest; mixed 
hardwoods, 
some ag fields 

2-lane paved road; 
shoulder varies; 

45-55MPH 

suburban-rural 

10. Huntingburg SR 162 from 
SR 245 to 
US 231; SR 
62 from US 
231 to Frog 
Pond Rd. 

19.6 Lincoln SP; 
mixed 
hardwoods, 
some ag fields; 
wetlands 
bisected by 
SR62 

2-lane paved road; 
large shoulder for 
most of route; 45-

55MPH 

suburban-rural 



 29

Table 3. Habitat variables measured at each 100m x 200m road section (modified from 
Malo et al. 2004). 

Habitat Variables  Measure (units) 
roads % 
grass/shrub ditch % 
agriculture/pasture % 
forest/woodlot % 
urban/recreational % 
urban/residential % 
water/wetland % 
grassland/shrubland % 

Road Variables  
overpasses P/A 
underpasses P/A 
culverts P/A 
straight/curve P/A 
speed limit km/h 
width m 
number of lanes number 
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Table 4. Vertebrate mortalities by taxonomic group recorded along all 13 survey routes, 
March 8, 2005 – July 31, 2006. 
 
  Birds   Mammals   Herps   Total 
Lindberg Rd 88  72  8016  8176 
        
SR26 33  80  1648  1761 
        
US231 33  76  237  346 
        
S. River Rd. 51  132  49  232 
        
DeKalb 5  117  11  133 
        
South Bend 2  58  2  62 
        
Warsaw 7  30  3  40 
        
Richmond 12  48  11  71 
        
Anderson 6  58  0  64 
        
Greenwood 9  43  0  52 
        
Greencastle 5  50  6  61 
        
Huntingburg 5  34  17  56 
        
Sellersburg 1  9  4  14 
        
Total 257   807   10004   11068 



 31

Table 5. Vertebrate species recorded along all 4 local survey routes, March 8, 2005 – July 
31, 2006. 
 

Scientific Name Common Name Total 
Mammals   
Blarina brevicauda northern short-tailed shrew 14
Canis familiaris domestic dog 1
Canis latrans coyote 1
Didelphis virginiana opossum 79
Felis catus cat 5
Lasiurus borealis eastern red bat 1
Marmota monax woodchuck 1
Mephitis mephitis striped skunk 16
Microtus ochrogaster prairie vole 1
Microtus pennsylvanicus meadow vole 15
Mus musculus house mouse 2
Mustela vison mink 6
Odocoileus virginianus white-tailed deer 4
Ondatra zibethicus muskrat 10
Peromyscus spp. deer/white-footed mouse 39
Procyon lotor raccoon 43
Scalopus aquaticus eastern mole 4
Sciurus carolinensis eastern gray squirrel 23
Sciurus niger eastern fox squirrel 27
Sorex cinereus masked shrew 1
Spermophilus tridecemlineatus 13-lined ground squirrel 6
Sylvilagus floridanus eastern cottontail 37
Tamiasciurus hudsonicus red squirrel 6
Tamias striatus eastern chipmunk 7
Vulpes vulpes red fox 1
 unknown bat 2
 unknown mammal 8
 Total 360
   
Birds   
Agelaius phoeniceus red-winged blackbird  8
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Branta canadensis Canada goose 2
Butorides virescens green heron 1
Cardeulis tristis American goldfinch 1
Cardinalis cardinalis northern cardinal 9
Chaetura pelagica chimney swift 36
Colaptes auratus northern flicker 1
Dumetella carolinensis gray catbird 1
Eremophila alpestris horned lark 1
Hirundo rustica barn swallow 5
Melanerpes erythrocephalus red-headed woodpecker 2
Melospiza melodia song sparrow 9
Molothrus ater brown-headed cowbird 2
Otus asio eastern screech owl 6
Passer domesticus house sparrow  15
Passerina cyanea indigo bunting 3
Phasianus colchicus ring-necked pheasant 2
Porzana carolina Sora 1
Quiscalus quiscula common grackle 6
Spizella passerina chipping sparrow 1
Sturnella magna eastern meadowlark 2
Sturnus vulgaris European starling 11
Tachycineta bicolor tree swallow 1
Troglodytes aedon house wren 1
Turdus migratorius American robin 18
Zenaida macroura mourning dove 4
 unknown bird 56
 Total 205
   
Herps   
Ambystoma tigrinum eastern tiger salamander 142
Bufo americanus American toad 111
Chelydra serpentina snapping turtle 23
Chrysemys picta midland painted turtle 28
Elaphe obsoleta black rat snake 5
Elaphe vulpina fox snake 9



 33

Graptemys geographica northern map turtle 1
Hyla spp. tree frog 1
Nerodia sipedon northern water snake 1
Pseudacris crucifer spring peeper 8
Rana catesbeiana bullfrog 1671
Rana clamitans green frog 172
Rana palustris pickerel frog 18
Rana pipiens northern leopard frog 74
Rana spp. unknown ranid 7602
Storeria dekayi wrightorum midland brown snake 19
Terrapene carolina eastern box turtle 1
Thamnophis sirtalis garter snake 35
Trachemys scripta  red-eared slider 13
 unknown frog 10
 unknown snake 4
 unknown turtle 2
 Total 9950
   
 Overall total 10515
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Table 6. Vertebrate species recorded along all 13 survey routes, March 8, 2005 – July 31, 
2006. 
 

Scientific Name Common Name Total
Mammals   
Blarina brevicauda northern short-tailed shrew 14
Canis familiaris domestic dog 3
Canis latrans coyote 3
Didelphis virginiana opossum 258
Felis catus cat 25
Lasiurus borealis eastern red bat 2
Marmota monax woodchuck 5
Mephitis mephitis striped skunk 34
Microtus ochrogaster prairie vole 1
Microtus pennsylvanicus meadow vole 16
Mus musculus house mouse 2
Mustela vison mink 10
Odocoileus virginianus white-tailed deer 26
Ondatra zibethicus muskrat 12
Peromyscus spp. deer/white-footed mouse 45
Procyon lotor raccoon 177
Rattus norvegicus Norway rat 1
Scalopus aquaticus eastern mole 5
Sciurus carolinensis eastern gray squirrel 26
Sciurus niger eastern fox squirrel 42
Sorex cinereus masked shrew 1
Spermophilus tridecemlineatus 13-lined ground squirrel 7
Sylvilagus floridanus eastern cottontail 60
Tamiasciurus hudsonicus red squirrel 6
Tamias striatus eastern chipmunk 7
Vulpes vulpes red fox 2
 unknown bat 2
 unknown mammal 15
 Total 807
   
Birds   
Accipiter cooperii Coooper's hawk 1
Agelaius phoeniceus red-winged blackbird  9
Anas platyrhynchos mallard 1
Branta canadensis Canada goose 2
Butorides virescens green heron 1
Cardeulis tristis American goldfinch 3
Cardinalis cardinalis northern cardinal 12
Chaetura pelagica chimney swift 37
Colaptes auratus northern flicker 1
Dumetella carolinensis gray catbird 1
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Eremophila alpestris horned lark 1
Falco sparverius American kestrel 1
Hirundo rustica barn swallow 5
Junco hyemalis dark-eyed junco 1
Melanerpes erythrocephalus red-headed woodpecker 2
Meleagris gallopavo wild turkey 1
Melospiza melodia song sparrow 12
Mimus polyglottos northern mockingbird 2
Molothrus ater brown-headed cowbird 2
Otus asio eastern screech owl 6
Passer domesticus house sparrow  21
Passerina cyanea indigo bunting 5
Phasianus colchicus ring-necked pheasant 2
Poecile atricapillus black-capped chickadee 1
Porzana carolina Sora 1
Quiscalus quiscula common grackle 7
Spizella passerina chipping sparrow 1
Sturnella magna eastern meadowlark 2
Sturnus vulgaris European starling 13
Tachycineta bicolor tree swallow 1
Troglodytes aedon house wren 1
Turdus migratorius American robin 27
Tyrannus tyrannus eastern kingbird 1
Zenaida macroura mourning dove 5
 unknown bird 66
 unknown swallow 1
 unknown sparrow 1
 Total 257
   
Herps   
Ambystoma tigrinum eastern tiger salamander 142
Bufo americanus American toad 112
Chelydra serpentina snapping turtle 25
Chrysemys picta midland painted turtle 40
Coluber constrictor constrictor northern black racer 1
Coluber constrictor foxii blue racer 2
Elaphe obsoleta black rat snake 8
Elaphe vulpina fox snake 9
Graptemys geographica northern map turtle 1
Hyla spp. tree frog 1
Lampropeltis getula nigra black kingsnake 1
Lampropeltis triangulum eastern milk snake 1
Pseudacris crucifer spring peeper 8
Rana catesbeiana bullfrog 1672
Rana clamitans green frog 172
Rana palustris pickerel frog 18
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Rana pipiens northern leopard frog 75
Rana spp. unknown ranid 7605
Storeria dekayi wrightorum midland brown snake 19
Terrapene carolina eastern box turtle 10
Thamnophis sirtalis garter snake 41
Trachemys scripta  red-eared slider 17
 unknown frog 16
 unknown snake 4
 unknown turtle 4
 Total 10004
   
 Overall total 11068
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Table 7. Habitat variables used to predict roadkill numbers along each local route per 
100m section. 
 
      
Step Variable Model R-Square C(p) F value Pr > F 
  Lindberg Rd.    
      
1 urbrecresid 0.9665 1367.38 461.83 < .0001 * 
2 waterresid 0.9868 534.560 22.91 0.0002 * 
3 urbresresid 0.9947 208.709 20.99 0.0004 * 
4 forresid 0.9982 66.0821 25.38 0.0002 * 
5 roads 0.9996 9.1780 46.57 < .0001 * 
6 ag 0.9997 7.0000 4.18 0.0656 
  US 231    
      
1 urbres 0.1691 1.8004 6.71 0.0141 * 
2 water 0.0547 1.6420 2.25 0.1431 
3 roads 0.0516 1.6041 2.21 0.1473 
  South River Rd.    
      
1 ditch 0.1115 2.4937 4.9 0.0328 * 
2 roads 0.1761 1.6245 2.98 0.0926 
  SR 26    
      
1 water 0.7577 7.6290 87.57 < .0001 * 
2 forest 0.0344 4.8572 4.46 0.044 * 
      
* significant at α 0.05     
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Figure 1. Map showing locations of local survey routes (n = 4). 

Figure 2. Map showing locations of remote survey routes in conjunction with 

wildlife/aircraft study (n = 9).  

Figure 3. Lindberg Rd. survey route with digitized habitat types and 100m buffer. 

Figure 4. South River Rd. survey route with digitized habitat types and 100m buffer. 

Figure 5. SR 26 survey route with digitized habitat types and 100m buffer. 

Figure 6. US 231 survey route with digitized habitat types and 100m buffer. 

Figure 7. March 2005 through July 2006 monthly roadkill levels vs. mean temperature 

and precipitation across all local routes. 

Figure 8. March 2005 through July 2006 monthly roadkill levels vs. mean temperature 

and precipitation on Lindberg Rd. route. 

Figure 9. March 2005 through July 2006 monthly roadkill levels vs. mean temperature 

and precipitation on US 231 route 

Figure 10. March 2005 through July 2006 monthly roadkill levels vs. mean temperature 

and precipitation on South River Rd. route 

Figure 11. March 2005 through July 2006 monthly roadkill levels vs. mean temperature 

and precipitation on SR 26 route. 

Figure 12. Canada geese along Lindberg Rd (photo courtesy of R. Zeiber). 

Figure 13. Chimney swift on shoulder of Lindberg Rd (photo courtesy of R. Zeiber). 

Figure 14. Mass of roadkilled anurans discovered during Lindberg Rd. survey. 
 
Figure 15. Subadult bullfrog mortality on Lindberg Rd. 
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Roadkill vs. temperature and precipitation, all local sites March 05 - July 06
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Lindberg Rd. roadkill vs. temperature and precipitation, March 05 - July 06
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US231 roadkill vs. temperature and precipitation, March 05 - July 06
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S. River Rd. roadkill vs. temperature and precipitation, March 05 - July 06
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SR 26 roadkill vs. temperature and precipitation, March 05 - July 06
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CHAPTER 2.  MITIGATION MEASURES FOR REDUCING WILDLIFE 

MORTALITY ON ROADWAYS: A REVIEW  

 

EXECUTIVE SUMMARY 

 There are over 6 million km of roads throughout the United States linking 

metropolitan areas and providing convenient routes of travel for both the commercial and 

private sectors.  While this road system is important to the infrastructure of the country it 

can also pose a threat to various wildlife species in the form of both physical and 

psychological barriers and wildlife/vehicle collisions.   Collisions with wildlife can be a 

major source of animal mortality and can be expensive and dangerous for motorists.  

Europe has led the way in the development of wildlife road mortality mitigation measures 

but the issue of road mortality mitigation in North America is becoming increasingly 

prudent.  

 There are several types of measures that can be implemented to reduce the effects 

of roads on a variety of wildlife species.  Pipe and box culverts can often be installed to 

facilitate the crossing of roads by numerous smaller animals. Underpasses are usually 

much larger in scale than culverts and incorporate the natural habitat in the area, such as 

large stream crossings.  Wildlife overpasses, also referred to as land bridges are designed 

to allow wildlife to cross over a road and are much more open in design. Traffic control 

and driver behavior modification can also be effective at times. Various nonstructural 

methods such as repellents that work against animal senses and habitat modifications are 

currently being researched, which may lead to innovative and less expensive alternatives 

to some of the more costly constructed measures.  Several biological factors need to be 

considered (e.g. species of concern, habitat requirements, life history, etc.) before 
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deciding on which mitigation measures may be most appropriate.  Furthermore, any 

implemented mitigation measures must be monitored post-construction to determine their 

true effectiveness.  

INTRODUCTION 

Roads are an important part of the infrastructure of the world.  Roads allow 

people and goods to move from place to place in a relatively expeditious manner.  In the 

United States, the 6.2 million km system of public roads, used by 200 million vehicles, 

links essentially every local area (National Research Council 1997). 

While roads are an important part of the infrastructure and can provide some 

ecological benefits such as maintenance of grassland plants in intense agricultural areas 

(Forman 2000), they can also present several ecological problems such as acting as both 

physical and biological barriers to many wildlife species (Jackson 2000, Forman and 

Alexander 1998).  Roads can affect the quality and quantity of available wildlife habitat, 

most notably through fragmentation.  Likewise, roads can be direct sources of wildlife 

mortality and in some instances, act as a predatory mechanism (Langton 1989).  Many 

other ecological effects of roads on species, soils, and water have been identified, with 

effects varying in distance outward from meters to kilometers (Ellenberg et al. 1991, 

Forman 1995).  These “road-effect zones” impact an estimated 15-20% of the United 

States (Forman and Alexander 1998). 

Collisions with automotive traffic can be a major source of mortality in animal 

populations (Romin and Bissonette 1996, Trombulak and Frissell 2000, Gibbs and 

Shriver 2002).  Lalo (1987) estimated vertebrate mortality on United States roads at 1 

million individuals per day.  There are a variety of mitigation approaches that can be used 
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to reduce the effects of roads and road mortality on wildlife populations.  In general, 

these approaches fall under one of two umbrellas:  the modification of motorist behavior 

and/or the modification of animal behavior.  Modifying motorist behavior often involves 

speed limits, lights, and signs whereas animal behavior can be modified by habitat 

alterations and wildlife crossing structures (Romin and Bissonette 1996, Forman et al. 

2003).  Wildlife crossing structures range from exclusion fences and culverts to 

overpass/underpass systems (Romin and Bissonette 1996, see Appendix).  Many 

structures are designed to reduce large animal-vehicle collisions (Forman et al. 2003).  

Such structures must be designed to allow safe passage for animals, promote habitat 

connectivity, be accessible, and encourage natural movement.  Unfortunately, the 

measures often used by states do not correlate with the perceived success of the measures 

and the most promising measures are the least used (Forman et al. 2003).  This is 

unfortunate, because poor designs do little to minimize road effects and are generally a 

waste of time and money (Forman et al. 2003).  Moreover they can interrupt natural 

processes which can lead to various ecological problems such as overgrazing, increased 

erosion, or population declines (Forman et al. 2003).   

A growing literature in the field of road ecology suggests that vehicle/wildlife 

collisions are important to biologists and transportation officials alike.  In this review, we 

summarized previous wildlife mitigation monitoring studies (Table 1), described some of 

the most common mitigation measures employed, and discussed factors that lend to their 

overall effectiveness. 
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TYPES OF CROSSING STRUCTURES 

Pipe and Box Culverts 

 Pipe culverts are relatively small structures (1-6ft. diameter) made of concrete, 

smooth steel, or corrugated metal designed to carry water under roads (Figure 1).  Europe 

has led the way in implementing smaller pipe-style culverts, also referred to as 

“amphibian tunnels” (Forman et al. 2003, Figures 1 and 2).  Box culverts, generally 

larger than pipe culverts, are also used to allow water to pass under roads (Figures 3 and 

4).  Unlike pipe culverts they usually remain dry except in periods of heavy run off.  

Culverts may be used by a variety of wildlife species (Rodriguez et al. 1996, Yanes et al. 

1995, Clevenger and Waltho 2000).  Kaye et al. (2005) reported that the use of a box 

culvert under a highway improvement project in Massachusetts allowed the crossing of 

spotted turtles (Clemmys guttata, a state threatened species) between two turtle habitats.  

The use of a culvert system reduced roadkill numbers in the Paynes Prairie State 

Preserve, Florida, by 93.5% (Dodd 2004).  Clevenger et al. (2001) monitored 36 culverts 

along the Trans-Canada highway and found a total of 618 crossings by a minimum of 9 

species, with an average of 2.8 species at each culvert.  In Australia, Taylor and 

Goldingay (2003) recorded 17 different vertebrate species using purpose-built fauna 

culverts in combination with exclusion fence under the Pacific Highway. 

Underpasses 

 Wildlife underpasses, also known as wildlife bridges, are large underpasses that 

provide a relatively unconfined passage for wildlife (Jackson and Griffin 2000).  Where 

roads cross over water or other roads, bridges can provide a passageway for many 

wildlife species, especially those that use riparian corridors (Figure 5).  In situations 
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where underpasses may hold excessive amounts of water, ledges can be incorporated into 

the designs to allow animal passage (Figure 6).  Veenbaas and Brandjes (1999) carried 

out a survey in 1997 to investigate the use of faunal passages in existing highway 

underpasses along waterways and found that mammals were present at all fauna passages 

and 75% of passages were used by amphibians.  Underpasses with the largest diameters 

were used most frequently by mammals; this relationship did not hold for amphibians.  

Passages with extended banks were used by more species overall. 

Overpasses 

 Overpasses for wildlife are mainly designed for larger animals such as large 

carnivores and ungulates (Figure 7).  They can range from 30-50m in width 

(perpendicular to the road) and span over 200m (Jackson and Griffin 2000, Forman et al. 

2003).  Overpasses are sometimes referred to as green bridges.  Green bridge is a term 

used to refer to a wildlife overpass with a relatively large strip of natural vegetation 

crossing over a road (Bekker et al. 1995).  Landscape connectors are especially wide 

overpasses that maintain the connectivity of horizontal ecological flows across the 

landscape (Forman et al. 1997).  Wildlife overpasses seem to accommodate a larger 

variety of species than underpasses (Jackson and Griffin 2000).  Some advantages to 

overpasses are that they are less confining, quieter, maintain ambient conditions of 

rainfall, temperature, and light, and can serve as both passageways for wildlife and 

intermediate habitat for smaller animals (e.g. small mammals, reptiles, and amphibians) 

(Jackson and Griffin 2000).  One of the drawbacks to overpasses is that they are often the 

most expensive option due to construction costs. 



 

 57

Van Wieren and Worm (2001) evaluated a wildlife overpass in the central 

Netherlands and found that the most frequent users of the pass were large mammals, 

specifically red deer (Cervus elaphus) and wild boar (Sus scrofa).  They also noted that 

crossings had increased almost threefold since previous monitoring in 1989 and 

suggested that the increase was due to habituation of red deer to the structure.  Keller 

(1999) also noted that ungulates, most notably roe deer (Capreolus capreolus) were the 

most frequent users of wildlife overpasses in Switzerland, Germany, France, and the 

Netherlands.  Clevenger and Waltho (2005) also found that larger mammals frequented 

overpasses in Banff National Park, Canada.  They monitored 2 overpass structures along 

the Trans-Canada highway and found that elk (Cervus elaphus) and deer (Odocoileus 

spp.) were the most frequent large mammals to use the structures. 

NONSTRUCTURAL METHODS 

 Cost is often a major concern when discussing which wildlife road mortality 

mitigation measures to implement. Costs can be extremely variable depending on the 

method chosen, availability of materials, and scale of the project.  Structural methods will 

almost always be more expensive than nonstructural methods.  While nonstructural 

methods may be less expensive, they may still prove effective—but like all mitigation 

methods, they need to be researched and their effectiveness evaluated.  Bank et al. (2002) 

reported on a variety of nonstructural methods currently being researched in Europe. 

These include 1) olfactory repellents in which scented foam is sprayed on vegetation and 

structures along the road, 2) ultrasound, 3) road lighting (which may have unfortunate 

negative consequences for nesting birds), 4) population control (e.g., hunting), which is 

most effective for local populations, and 5) habitat modification, used primarily to keep 
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animals away from the road or increase to increase driver and animal visibility.  If 

cheaper alternatives to expensive structures (e.g., overpasses) are found to be effective at 

mitigating roadkill, it would allow wider use and still promote permeability across roads 

(Forman et al. 2003). 

Traffic Control 

 While it is difficult to predict exactly where and when animals will appear on 

roads, making motorists aware of the potential for animals crossing can sometimes help 

mitigate wildlife road mortality.  One way to accomplish this is by reducing vehicle 

speed in areas of known animal crossings through the use of signs and/or speed bumps 

and enhancing speed limit enforcement.  High-speed traffic is often considered one of the 

main causes of wildlife-vehicle collisions (Pojar et al. 1975, Case 1978).  Wildlife 

crossing signs can also be installed in areas of known animal crossings to help make 

drivers more aware of wildlife presence.  Unfortunately, signs may be relative ineffective 

(Pojar et al. 1975).  Aberg (1981, as cited in Groot Bruinderink and Hazebroek 1996) 

studied the effectiveness of wildlife-crossing signs and the ability of drivers to detect 

moose decoys with only 40% noticing the signs and/or decoys.  Even stuffed mule deer 

(Odocoileus hemionus) placed in road rights-of-way failed to evoke a reaction from many 

drivers (D. F. Reed, personal communication as cited in Groot Bruinderink and 

Hazebroek 1996). 

MITIGATION FOR BIRDS 

While most wildlife road mortality mitigation measures center on mammals, 

reptiles, and amphibians it must be mentioned that roads also can also affect birds (e.g., 

fragmentation, isolation, and direct mortality; Table 2).  One advantage that most birds 
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have over other taxa is the ability to fly over roads rather than walk or run across them, 

thus allowing them a safer mode of travel from point A to point B.  However, birds have 

some unique problems.  Birds often define territories by use of songs and if those songs 

cannot be heard over (or are distorted by) vehicular traffic noise, males may find it 

difficult to attract and keep mates (Ferris 1979, Reijnen and Foppen 1995).  This could 

potentially force males to conduct wider searches for females and bring them into closer 

proximity to roads.  Many migrating species rely on starlight navigation (Emlen 1975) 

and light pollution from a variety of sources, including highway lighting, may cause birds 

to become disoriented and result in collisions with automobiles (Ogdon 1996).  Non- or 

low-flying birds (e.g., quail, turkey, owls), birds that forage at ground level, and 

scavengers are even more susceptible to road mortality because of their habits (Stoner 

1925).  Jacobson (2005) addressed several of these problems and suggested possible 

solutions (Table 3). 

EFFECTIVENESS OF STRUCTURES 

Placement 

 There are several challenges associated with designing and implementing wildlife 

crossing structures.  In some instances, the location of crossing structures is very 

important and may be the most important factor (Podloucky 1989, Foster and Humphrey 

1995, Yanes et al. 1995, Land and Lotz 1996, Rodriguez et al. 1996, Clevenger and 

Waltho 2000).  This can be especially true for smaller, less mobile species such as 

reptiles and amphibians (Jackson and Griffin 2000).  Rodriguez et al. (1996) suggested 

that crossing structures need to be placed in areas of suitable habitat and that passages 
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implemented near continual disturbance (e.g. excessive human presence) were less 

frequented by several species. 

Dimensions 

 The dimensions of structures are another important factor in designing 

passageways for vertebrates (Ulbrich 1984, Ballon 1985 as cited in Yanes et al. 1995).  

The size and shape of a particular structure may be the determining factor for crossing 

success (Reed et al. 1975, Ballon 1985, Cain et al. 2003, Clevenger and Waltho 2005).  In 

Europe, hourglass-shaped overpasses have been found to be used regularly by wild boar 

but not by red deer who become unnerved or “spooked” by the constriction at the center 

(Vassant et al. 1993 as cited in Forman et al. 2003).  For some species, the amount of 

openness in a passage may be more important than size (Foster and Humphrey 1995, 

Clevenger and Waltho 2005).  Structures along the Trans-Canada highway with high 

openness ratios (short in length, high and wide) strongly influenced passage by grizzly 

bears (Ursus arctos horribilis), wolves (Canis lupus), elk, and deer while more 

constrictive structures were frequented more often by black bears (Ursus americanus) 

and cougars (Felis concolor) (Clevenger and Waltho 2005).  Tunnels that allow animals 

to see the other end have been positively correlated with use by some species (Rosell et 

al. 1997 as cited in Jackson and Griffin 2000).  Conversely, some studies (Rodriguez et 

al. 1996, Clevenger and Waltho 1999) have suggested that smaller passages may be 

better for some small mammals.  The survival instinct of prey species, such as small 

mammals, can limit crossing use and there has been some evidence of predators using 

crossings to capture prey (Hunt et al. 1987, Foster and Humphrey 1995).  Some structure 

designs, i.e., exposed, restricted, and narrow, may reduce the effectiveness of escape 
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mechanisms of prey species (Reed et al. 1975, Yanes, et al. 1995, and Clevenger et al. 

2002). 

Approaches 

Approaches to structures are another important factor in wildlife crossing design 

and implementation (Veenbaas and Brandjes 1999, Clevenger and Waltho 2000).  The 

availability of cover (or lack of) at the approach to a crossing structure can determine if a 

particular species will use it.  Natural vegetation can enhance the “attractiveness” of 

crossing structures to animals and allow a continuity of habitat.  Cover may influence the 

use of crossings by small to mid-sized mammals (Hunt et al. 1987, Rodriguez et al. 1996, 

Clevenger and Waltho 1999) but deter other species such as deer and other ungulates if it 

is too restrictive (Pedevillano and Wright 1987, Clevenger and Waltho 2000). 

Fencing and Directional Devices 

 The use of fencing and/or barrier walls along with passages is often needed to 

prevent animal access to the road and facilitate movement towards crossing structures 

(Ratcliffe 1983, Feldhamer et al. 1986, Jackson and Tyning 1989, Jackson 1996, AMBS 

1997, Bissonette and Hammer 2000, Jackson and Griffin 2000, Dodd 2004, and 

Cavallaro et al. 2005; Figure 8).  The use of a barrier wall in conjunction with a culvert 

system reduced roadkill in the Paynes Prairie State Preserve, Florida, by 93.5% (Dodd 

2004; Figure 9).  For many larger species, fencing is necessary because of their inherent 

avoidance of passages.  Many ungulates will avoid underpasses unless there is no other 

way to cross (Ward, 1982) and mountain lions traveling along streams have been known 

to leave the stream and cross over highways rather than use under-road culverts (Beier 

1995).  Fencing alone without crossing structures can be detrimental as it can act as a 
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barrier to natural movements and contribute to habitat fragmentation (Jaeger and Fahrig 

2004).  Fencing also needs to extend far enough to either side of a crossing structure to 

promote guidance to the structure.  The length of fencing is often dictated by the target 

species and the surrounding terrain. 

Structure Conditions 

Moisture, temperature, light, substrate, and noise (disturbance) can all be factors 

in determining if species will use wildlife passages (Langton 1989, Mansergh and Scotts 

1989, Beier 1995, Yanes et al. 1995, Jackson 1996).  Amphibians generally need moist 

conditions during migration so the ability to design passages that can allow rain to 

moisten the passage is important (Jackson 1996).  Langton (1989) found that temperature 

differences between the interior and exterior of culverts may dissuade use by some 

amphibian species.  The ability for air to flow free through a passage (e.g. grate tops 

rather than solid tops) may help to negate temperature differences and allow freer use.  

Moreover, open tops will allow more ambient light to enter crossing structures.  Jackson 

and Tyning (1989) noted that increased natural light in tunnels accelerated the rate at 

which spotted salamanders (Ambystoma maculatum) would cross.  Conversely, artificial 

light may often deter animals from a crossing structure (Reed et al. 1981, Jackson 2000).  

The inclusion of a natural substrate within a crossing structure can provide 

continuity of habitat and may encourage animals to pass (Yanes et al. 1995, Jackson 

2000).  In controlled experiments between bare concrete tunnels, soil-lined tunnels, and 

open grass, Lesbarreres et al. (2004) found that water frogs (Rana esculenta) and 

common toads (Bufo bufo) preferred the tunnels to the grass while the agile frogs (Rana 

dalmatina) preferred grass.  Use and crossing success were both higher in the soil-lined 
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tunnel.  There has been a suggestion that frogs are deterred from bare concrete due to its 

alkalinity (Mougey as cited in Lesbarreres 1996).  Juvenile Western toads (Bufo boreas) 

and red-legged frogs (Rana aurora) showed greater movement in culverts with substrate 

versus culverts without (Bernard 2000 as cited in Fitzgibbon 2001). 

Consideration of noise-reducing materials when constructing crossing structures 

is important to their success.  The amount of noise (e.g. traffic) can affect animal usage of 

crossing structures (Clevenger and Waltho 2000, Clevenger and Waltho 2005, Jackson 

2000).  In Banff National Park, Canada, carnivore and ungulate movement through 

passages near the town of Banff was significantly affected by human activity and noise 

(Clevenger and Waltho 2000). 

CONCLUSION 

 There are many ways to mitigate wildlife road mortality.  Before planning any 

mitigation project various methods should be researched and all suggestions considered.  

Ultimately, preconstruction planning is more economical than retrofitting existing roads.  

When deciding to build wildlife crossing structures cost and effectiveness need to be 

addressed, but an understanding of various species and their requirements is just as 

important.  Moreover, a solid post-construction monitoring program is essential to 

determine the success of any mitigation project, keeping in mind that animals need time 

to acclimate to any new structures.  Furthermore, researchers and developers of wildlife 

road mortality mitigation methods should strive to move forward as engineering 

technology and understanding of biological systems advance. These types of 

discrepancies are the inherent problem with trying to design effective wildlife crossing 
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structures; the need to accommodate the most species and yet be economical and 

structurally sound to the designer/builder. 
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Table 1. Wildlife passage monitoring studies (modified from Forman et al. 2003). 
Study Mitigation Measure Location Target Species  Monitoring Duration Species most often 

      (or group)   encountered 
AMBS 
Consulting 1997 underpasses 

New South Wales, 
Australia unspecified 9 months in 1997 unspecified 

Aresco 2005 drift fence and culverts Florida, USA reptiles and amphibians Apr 2000 - Nov 2003 reptiles and amphibians 

Ballon 1985 unspecified Upper Rhine, France unspecified 9 months in 1985 ungulates 

Cain et al. 2003 bridges and culverts Texas, USA bobcats Aug 1997 - May 1999 bobcats 

Clevenger 1998 
underpasses and 
overpasses Alberta, Canada unspecified Jan 1998 - Dec 1998 large mammals 

Clevenger and 
Waltho 1999 dry drainage culverts Alberta, Canada 

small- and med-sized 
mammals 

74 days in late 
winter/early spring weasels 

Clevenger and 
Waltho 2000 underpasses, culverts Alberta, Canada large mammals 

Jan 1995 - Mar 1996, 
Nov 1996 - Jun 1998 elk 

Clevenger and 
Waltho 2005 

underpasses and 
overpasses Alberta, Canada large mammals Nov 1997 - Aug 2000 deer 

Dodd et al. 2003 culverts Florida, USA unspecified Mar 2001 - Mar 2002 Southern leopard frogs 

Donaldson 2005 underpasses Virginia, USA large mammals Jun 2004 - May 2005 white-tailed deer 

Fitzgibbon 2001 culverts Vancouver, Canada 
amphibians and small 
mammals 2000 weasels 

Foresman 2001 culverts Montana, USA small mammals Jan 2001-Aug 2001 unspecified 
Foster and 
Humphrey 1995 underpasses Florida, USA Florida panthers 

2 month, 16 days in 
1995 medium- to large mammals 

Hunt et al. 1987 tunnels 
New South Wales, 
Australia unspecified 2 months in 1987 small to medium-sized mammals 

Jackson 1996 amphibian tunnels Massachusetts, USA spotted salamanders Spring 1998 spotted salamanders 
Jackson and 
Tyning 1989 drift fences and tunnels Massachusetts, USA spotted salamanders 1988 spotted salamanders 

Jones 2000 reflectors, ramps, pipes Tasmania 
eastern quolls, Tasmanian 
devils 

October 1990 - April 
1993 unspecified 
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Kaye et al. 2005 culverts Massachusetts, USA spotted turtles Apr 2004 - July 2004 unspecified 

Keller 1999 overpasses 
Switzerland, Germany, 
France, Netherlands unspecified unspecified roe deer 

Land and Lotz 
1995 underpasses Florida, USA Florida panthers unspecified raccoons, white-tailed deer 

Langton 2002 amphibian tunnels England amphibians unspecified common toad 
LaPoint et al. 
2003 

various under-road 
passages New York, USA unspecified Mar 2002 - Apr 2002 raccoons 

Lesbarreres et al. 
2004 amphibian tunnels France 

common toad, water frogs, 
agile frogs Feb 2001 - May 2001 water frogs, common toads 

Pfister et al. 1997 overpasses 
Switzerland, Germany, 
France, Netherlands unspecified 2 years mammals 

Puky and Vogel 
2003 

various types of 
passages Hungary amphibians unspecified unspecified 

Reed et al. 1975 underpasses Wyoming, USA deer 2 years ungulates 
Rodriguez et al. 
1996 

culverts, underpasses, 
overpasses Montes de Toledo, Spain none Sept 1991 - July 1992 small mammals 

Roof and 
Wooding 1996 underpasses Florida, USA black bears Dec 1994 - Dec 1995 rabbits 

Rosell et al. 1997 underpasses Catalonia, Spain unspecified 11 months in 1997 unspecified 
Taylor and 
Goldingay 2003 culverts 

New South Wales, 
Australia unspecified spring/summer 2000 bandicoots 

Van Wieren and 
Worm 2001 overpasses Netherlands mammals 1989, 1994, 1995 red deer 
Veenbaas and 
Brandjes 1999 

various types of 
passages Netherlands unspecified unspecified mice, voles 

Woods 1990 underpasses Alberta, Canada unspecified 3 years ungulates 

Yanes et al. 1993 culverts Central Spain none 
four seasonal periods 
over 1 year small mammals 
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Table 2. Fragmentation and disturbance impacts to birds from highways (from Jacobson 2005). 
Impact Problem Suggested solution 
Loss of large carnivores More small carnivores prey disproportionately on birds Highway crossing structures for large carnivores 
   
Habitat dissection Habitat parcels are too small to contain complete territories Avoid dissection by highway placement 
  Use causeways or viaducts to maintain small scale 
  habitat connectivity 
   
Isolation Highways are barriers to less mobile or reclusive birds Overall connectivity strategy 
  Use open-span bridges, viaducts, or wildlife 
  overpasses 
   
Noise Disrupts song or intimidates shy species Noise barriers 
  Reduce noise sources such as tires and road 
  surfaces 
   
Lights Migrants can't see stars to navigate Coordinate light pollution reduction 
  Ensure lights are necessary before installation 
  Use lower wattage flat lens fixtures on highways,  
    retroreflective elements on signs and pavement 
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Table 3. Direct mortality to birds from highways (from Jacobson 2005). 
Impact Problem Suggested solution 
Walking birds Non-flying birds incur greater mortality risk Crossing structures with large openness ratios 
  (underpasses) or wildlife overpasses 
   
Water birds Winds over bridges can slam flying birds into vehicles Diversion poles on bridge decks 
   
Owls Owls hunt at headlight level Diversion poles or short fences along highway 
  medians and rights-of-way 
   
Ground nesters Mowing rights-of-way kills nesters Mow after August 1 
   
Scavengers Killed while foraging on roadkill Reduce roadkill 
  Remove roadkill from road 
   
Migrant landfalls Exhausted migrants fly into vehicles Low temporary fences to encourage higher flight 
  across roads 
   
Frugivores Fruiting median plants attracts birds across traffic Plant non-fruiting varieties 
  Remove fruiting varieties 
   
Winter finches Deicing salt or sand attracts birds to road surface Velocity spreaders 
  Road temperature sensors to reduce quantities 
  Concentrate runoff appropriately 
    Public education program 
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Figure 1. Small pipe culvert with mesh fence for small mammals and amphibians (Bank 
et al. 2002). 

 
 
 
 

Figure 2. Amphibian tunnel (FWHA/USDOT 2002).  
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Figure 3. Box culvert and fencing (Clevenger 2004). 

 
 
 
Figure 4. Box culvert underpass and fencing for multiple species (Puky 2003). 
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Figure 5. Creek underpass in Banff National Park, Canada (Clevenger 2004). 

 
 
 
 
Figure 6. Box culvert modified with ledge for small animal passage (Bank et al. 2002). 
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Figure 7. Overpass in Banff National Park, Canada (CPAWS 2004). 

 
 

 
Figure 8. (Clevenger 2004) 
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Figure 9. Amphibian wall and culvert system (FWHA/USDOT 2002). 
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CHAPTER 3.  EVALUATION OF WILDLIFE HAZARDS AT GENERAL 

AVIATION AIRPORTS IN INDIANA 

 

EXECUTIVE SUMMARY 

Collisions between wildlife and aircraft (wildlife strikes) are a serious problem facing 

wildlife managers, civilian aviation employees, and military personnel.  Wildlife strikes 

have killed over 350 people worldwide and in the United States alone cause more than 

580,000 hours of aircraft downtime and cost the civil aviation industry over $556 million 

annually (Cleary et al. 2006).  Despite a substantial amount of information available on 

the causes of wildlife strikes at large international airports, few researchers have 

considered wildlife hazards at smaller regional airports and airfields.  In this study, we 

evaluated the need for management actions to reduce wildlife strikes at general aviation 

airports throughout Indiana by conducting wildlife hazard assessments at a subset of 10 

airports throughout the state.  For each focal airport, we conducted 1) habitat assessments 

in the airport environment (including perimeter-fence evaluations), 2) inventories of 

wildlife that could be hazardous to aircraft, and 3) surveys of pilot/airport operator 

perceptions regarding wildlife hazards.   

On average, airport habitats consisted mainly of short grass (40.2% of total airport 

area), soybean fields (10.3%), corn fields (9.5%), runway systems (8.1%), other 

development (6.6%), woodlots (5.2%), medium grass (4.8%), tall grass (4.6%), and 

hayfields (3.2%).  At least two types of wildlife attractants were present at each airport 

property, but most airports had five to seven types.  The most common wildlife 

attractants included standing water (ephemeral), open culverts, crop fields, woodlot 

refugia, and gravel piles.  Proportion of airport perimeters fenced ranged from 7.5% to 
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100%, but most airport perimeters were >40% fenced.  Most airports with >25% of the 

perimeter enclosed by chain-link fencing had 0.2-0.5 openings per 100 m of fence, with 

gaps and dig-holes being the most common openings.   

Considering the most hazardous species, 0-92 white-tailed deer and 0-28 coyotes 

were observed at individual airports combining all survey methods across a year.  Of the 

16 bird species groups identified by Dolbeer et al. (2000) as hazardous to aircraft, 

American kestrel, blackbirds-starling, crows-ravens, mourning dove, shorebirds, 

sparrows, and swallows were present at 9-10 of the airport properties; geese, hawks 

(buteos), and vultures were present at 7-8 of the airport properties; and ducks, herons, and 

rock doves were present at 5-6.  Among all airports, the most numerous bird species 

group was blackbirds-starling, although the abundance of the blackbirds-starling group 

and most other species groups varied widely across seasons and airports.   

Questionnaires indicated that pilots using focal airports clearly were accustomed 

to wildlife hazards: 69% of respondents reported that they had altered aircraft operation 

due to wildlife within the past year, and 25% reported involvement in a wildlife strike 

during the past year.  Furthermore, 88% of respondents felt that wildlife populations at 

Indiana airports were at least “somewhat hazardous”.  Despite pilots’ awareness of 

wildlife hazards, less than 70% of respondents supported the use of fencing or wildlife 

deterrents, 43% supported modification/elimination of wildlife habitat, and only 38% of 

respondents supported for lethal removal of wildlife on airport properties.   

Based on our research at focal airports, we conclude that wildlife hazard 

management should be improved at general aviation airports in Indiana.  Because most 

wildlife hazard problems at airports can be addressed with traditional methods, we 
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recommend that airport personnel become familiar with established techniques, such as 

those summarized in Cleary and Dolbeer (1999).  Hazards associated with deer and 

coyotes could be alleviated by installing suitable fencing where funds are available.  For 

airports with extant fences, care should be taken to monitor fences regularly and repair 

gaps as soon as they are discovered.  Presence of deer and coyotes inside airport fences 

should not be tolerated.  Birds are best managed by maintaining airport habitats in a 

manner that minimizes availability and/or quality of food, water, cover, and loafing sites 

for hazardous species.  Furthermore, several new technologies and refinements in 

techniques for wildlife damage management at airports have emerged recently and may 

benefit small airports, such as advancements in electric fencing and the use of dead bird 

effigies to repel some hazardous bird species.  
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INTRODUCTION 

Collisions between wildlife and aircraft (wildlife strikes) are a serious problem both for 

economic and safety reasons.  Wildlife strikes cause more than 530,000 hours of aircraft 

downtime each year and cost the civil aviation industry over $500 million annually 

(USDA/APHIS 2004).  Furthermore, more than 100 people have died as a result of 

wildlife strikes in the U.S. since 1960 (Cleary and Dolbeer 1999), and over 350 people 

have been killed in wildlife strikes worldwide since the inception of aviation 100 years 

ago (Sodhi 2002).  Unfortunately, the wildlife strike problem is expected to worsen, as 1) 

air travel increases, 2) wildlife populations grow, and 3) commercial air carriers replace 

three- and four-engine aircraft with quieter, more efficient two-engine aircraft that are 

more vulnerable to catastrophic strikes (Cleary et al. 2003).   

In addition to wildlife strikes with civil aircraft, military aircraft also have 

experienced significant losses.  Between 1990 and 1998, there were an estimated 22,000 

collisions between birds and aircraft in the U.S.; such collisions cost $400 million 

annually in aircraft repairs.  In particular, aircraft of the U.S. Air Force incur over 2,500 

bird strikes per year (Lovell 1997), and since 1987, 5 U.S. Air Force aircraft have been 

totally destroyed with 4 crewmen killed (Arrington 2003).  It is clear that understanding 

the causal factors contributing to bird-aircraft collisions and developing solutions to 

reduce such collisions are critical challenges currently facing wildlife managers, civilian 

aviation employees, and military personnel.   

Although mid-air collisions between aircraft and large soaring birds can be 

catastrophic (DeVault et al. 2005), collisions in the airport environment are more 

problematic overall.  Commercial and general aviation airports, which commonly are 
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located in close proximity to water bodies and large grasslands, often harbor large 

populations of birds, white-tailed deer, coyotes, and other wildlife that are potentially 

dangerous to aircraft (Dolbeer et al. 2000).  The combination of abundant wildlife 

populations and frequent aircraft take-offs and landings at airports commonly leads to 

unacceptable levels of wildlife-strike occurrences—over 90% of wildlife strikes to civil 

aircraft occur in the airport environment (Cleary et al. 1999).  Birds account for 

approximately 97% of all aircraft collisions with wildlife, and the vast majority of bird 

strikes occur in the airport environment.  Mammals are also hazardous at airports; 616 

white-tailed deer collisions and 174 coyote collisions were reported in the U.S. from 

1990-2004 (Cleary et al. 2005).  Since 1990, 172 collisions with birds ( 141; 82%) and 

mammals (31; 18%) have occurred in the United States, of which 9 resulted in human 

fatalities (8 bird and 1 mammal; Cleary et al. 2006).  An increased understanding of the 

causal factors contributing to wildlife strikes at airports and the continued development of 

cost-effective solutions to reduce such collisions potentially would reduce human 

mortalities and substantial economic losses to the aviation industry. 

 Wildlife biologists have studied wildlife strikes in many locations, but most 

research has been limited to investigations at large international airports (e.g., Dolbeer et 

al. 1993); few researchers have considered wildlife problems at smaller regional airports 

and airfields.  However, because smaller airports often are located in rural areas, the 

potential for wildlife strikes is usually significant.  Some information is available 

concerning bird community structure at small airports in Illinois (Kershner and Bollinger 

1996), but these surveys were concerned more with bird conservation than aviation 

hazards.  Very little information is available regarding community structure of birds and 



 

 89

large mammals at small midwestern airports.  Nonetheless, every airport that receives 

grant-in-aid assistance from the Federal Aviation Administration (FAA), regardless of its 

size and the type of air traffic it accommodates, is required to ensure a safe operating 

environment with respect to wildlife hazards (Federal Aviation Administration Advisory 

Circular 150/5200-33A, 2004).  Thus, it is necessary for all airports to sufficiently 

identify potential problems with hazardous wildlife to prevent wildlife strikes. 

 Cleary and Dolbeer (1999) prepared a manual with the purpose of assisting 

“airport personnel in the development, implementation, and evaluation of Wildlife 

Hazard Management Plans at airports.”  They demonstrated how to evaluate airport 

environments for wildlife hazards and how to implement appropriate management 

strategies.  The problem of wildlife strikes varies from airport to airport, depending on 

factors such as air traffic type and volume, local and migratory wildlife populations, and 

local wildlife habitat conditions.  Thus, for effective wildlife strike management to be 

implemented at a local scale, the nature and magnitude of wildlife strike problems must 

be evaluated at each airport individually.  Simple management measures at airports often 

reduce wildlife strikes significantly, but local assessments of wildlife problems must be 

conducted first.   

 The objective of the research described herein was to evaluate the need for 

management actions to reduce wildlife strikes at general aviation airports throughout 

Indiana.  In essence, we conducted a wildlife hazard assessment (see Cleary and Dolbeer 

1999) at a subset of general aviation airports throughout the state.  Ten focal airports 

were chosen for study and varied in size, aircraft traffic, habitat composition, and 

proximity to urban areas.  For each focal airport, our wildlife hazard evaluations 
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consisted of 1) inventories of wildlife that could be hazardous to aircraft, 2) habitat 

assessments in the airport environments, and 3) surveys of pilot/airport operator 

perceptions regarding wildlife hazards.   

 Wildlife inventories were designed to census the bird and mammal communities 

at each focal airport over a year.  We conducted nighttime spotlight surveys and baited 

remote camera surveys to document the presence and relative abundance of deer, coyotes, 

and other medium-sized mammals (e.g., raccoons, opossums).  We also conducted 

seasonal walking transect surveys to document the presence and abundance of birds on 

airport properties that are potentially dangerous to aviation. 

We conducted two types of habitat assessments: on-site habitat evaluations and 

Geographic Information System (GIS) analyses.  On-site evaluations allowed us to 

examine and map local features of airport properties that might influence wildlife 

presence, abundance, and/or activity patterns (e.g., open garbage receptacles, depressions 

in pavement that could collect water and attract birds) that were not evident from aerial 

photographs or other remote imagery, and to measure and evaluate airport fences.  GIS 

analyses allowed us to assess airport habitats (and surrounding properties in some cases) 

in a more quantitative manner, by categorizing and measuring the extent and proportion 

of various habitat types present at the focal airports.  GIS analyses also produced maps 

and associated data layers that were made available to airport managers. 

 To document wildlife hazard perceptions and experiences of pilots and airport 

operators at each airport in our subset, we designed and distributed a standardized 

questionnaire to airport managers at each focal airport.  We gathered information on past 
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wildlife strikes and near-strikes, perceptions about the importance of wildlife hazard 

management, and sightings of notable wildlife hazards.   

METHODS 

Selection of Focal Airports 

Ten airports were chosen as study sites for our investigation of wildlife hazards at Indiana 

airports (Table 1).  Participating airports were chosen in consultation with the Indiana 

Department of Transportation (INDOT) and the Aviation Association of Indiana (AAI).  

We attempted to select our subset of airports so that it represented the spectrum of sizes, 

aircraft traffic, habitat types, proximity to large urban areas, and current extent of wildlife 

hazard management programs exhibited by Indiana airports.  We visited each airport 

twice during each of 4 seasons (spring 2005, summer 2005, fall 2005, winter 2006) for a 

total of 8 visits per airport.  During the first visits in spring 2005, we met with airport 

personnel to learn security procedures at each property and establish sampling locations 

for inventories of wildlife.   

Wildlife Inventories 

Spotlight Surveys 

We conducted two spotlight surveys (Bookhout 1996) during each season at each airport, 

for a total of 8 spotlight surveys per airport.  Survey routes were designed to cover as 

much of the airport property as practical, given the specific conditions present at each 

airport (i.e., habitat, topography, access), and ranged from 1.63-7.93 km in length (Table 

1; Figs. 1-10).  Spotlight surveys began between 0.5 hr after sunset and 23:30 EST.  

During each survey, a team of 1-3 observers drove slowly (~10 km/h) in a truck or ATV 

along the established route, stopped frequently, and shined a 1,000,000 candle-power 
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spotlight on both sides of the route.  When an animal was observed, we recorded the 

species and distance from the survey route on a standardized data sheet.   

Bird Surveys 

We used walking line transect surveys (Bibby et al. 1992) to sample bird populations at 

each airport.  We conducted two surveys during each season at each airport, for a total of 

8 bird surveys per airport.  Transect lengths ranged from 0.79-1.89 km (Table 1; Figs. 1-

10), and were established based on: 1) ability to survey a representative sample of 

habitats available to birds within the airport property, 2) topography (in terms of our 

ability to view as much of the airport property as possible), and 3) accessibility.  A team 

of 1-3 observers walked at a pace of ~2 km/hr and paused frequently to listen and look 

for birds. We were careful not to double-count individuals at corners on L- or U-shaped 

transects.  During spring and summer seasons, counts were confined to a 5-hr period 

beginning 30 min before sunrise on days with little wind and no rain.  During fall and 

winter (non-breeding season when birds do not sing), counts were not restricted to 

morning hours.  For each bird detected, the observer recorded species, mode of detection 

(song, call, or visual), and distance to transect.  Many birds that were counted were 

singing and, therefore, adult males.  However, detections by sight or call note likely 

included some females, especially for visually conspicuous species such as red-winged 

blackbird and eastern meadowlark, so we report count data as “individuals” per km.  

Here, we report only the 16 species groups identified by Dolbeer et al. (2000) as 

potentially hazardous to aviation.   

Remote Camera Surveys 
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We used digital infrared remote cameras (Stealth Cam, Inc.), designed to trigger upon 

movement, as an additional means of detecting wildlife on airport properties.  Because 

we did not capture and mark individuals (e.g., individual deer and coyotes), it was not 

possible to assess absolute abundance of wildlife using remote cameras (i.e., use of 

remote cameras did not constitute a mark/recapture technique).  Thus, we primarily used 

cameras to detect wildlife presence and compare relative abundances among airport 

properties, as well as to assess the effectiveness of perimeter fences.  We placed cameras 

in locations where animals were likely to travel, such as fence holes, openings of 

culverts, small wetlands, refugia (e.g., small woodlots), and preexisting wildlife trails 

(Figs. 1-10).  During each season at each airport, 3-4 cameras were placed on airport 

properties and baited with a commercial wildlife attractant (skunk essence).  Each camera 

operated for a maximum of 240 hours during each of the spring, summer and fall seasons.  

In an effort to increase performance, we equipped cameras with larger batteries during 

the winter season, resulting in an average operating time of 890 hours per camera.  

Photographs were downloaded onto a laptop computer and analyzed after collection.  We 

attempted to use the same camera locations each season, although occasionally it was 

necessary to establish new camera locations (e.g., when cameras were subject to flooding, 

tampering, or frequent anthropogenic activity). 

Opportunistic Observations 

During each site visit to airport properties, we were careful to record any noteworthy 

observation of wildlife, especially presence of species hazardous to aviation (e.g., 

vultures, gulls, geese, coyotes, and deer).  Opportunistic observations were made using 

visual observations of individuals and by noting presence of scat and tracks.   
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Habitat and Fencing Evaluation 

On-site Analyses 

We conducted an on-site habitat assessment during the summer season at each airport and 

created a field map of major habitat types that could be expected to influence presence or 

abundance of wildlife on the airport property.  We consulted aerial photographs (obtained 

by downloading geographic raster data generated in 2003 by the USDA National 

Agricultural Imagery Program [NAIP], provided by the Indiana Geological Survey [IGS; 

http://129.79.145.5/arcims/statewide/index.html]) to aid our interpretation of the spatial 

extent and location of habitat patches.  If a given airport had a completely fenced airfield, 

we mapped habitats within the fenceline only.  For airports that lacked complete fencing 

or other obvious boundary markers (e.g., roads), we mapped habitats within official 

property boundaries as indicated by airport personnel.   

Habitat classifications were based on general habitat niches occupied by various 

wildlife taxa and for potential to act as wildlife attractants.  Habitat classifications 

included alfalfa, bare earth/construction, cattail marsh, corn field, developed (buildings, 

paved roads and parking lots), dirt/gravel pile (bare or covered with weeds), ephemeral 

pool, fencerow, grassy swamp, gravel road, hayfield, medium grass (10–45 cm tall, 

mowed several times per year) ornamental/shade trees, permanent water, runway system 

(active runways and taxiways), savanna, scrub-shrub (mix of shrubs, young trees, and tall 

grass), short grass (<10 cm tall, mowed weekly or bi-weekly), sorghum field, soybean 

field, stone swale, tall grass (>75 cm tall, not mowed more than once per year), weedy 

ditch, wheat field, woodlot, and other (e.g., old-field habitat consisting mainly of tall 

grass, old runway system with short grass growing through cracked pavement).   
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In addition to mapping general habitats, we carefully noted presence of wildlife 

attractants (e.g., standing water, refuse containers, brush piles, and culverts) during all 

seasons (Cleary and Dolbeer 1999).  Specifically, we recorded presence of crop fields 

(alfalfa, corn, soybean, sorghum, wheat), woodlot refugia, standing water (permanent or 

ephemeral), open streams (permanent or ephemeral, flowing above-ground), open refuse 

containers, open buildings (e.g., hangars without closing doors), open culverts (i.e., those 

without grating), brush piles, and gravel piles on airport properties.  With respect to open 

culverts, we were interested primarily in those that provided potential den sites for 

mammals (e.g., coyote, raccoon, skunk, or opossum) or a means of access to fenced 

airfields.  Occasionally, we also searched surrounding properties for habitat features that 

might attract hazardous wildlife (e.g., potential roost sites for vultures).   

Finally, we made a general assessment of the effectiveness of fencing at 

each airport based on fence type, proportion of airport perimeter fenced, and 

number and type of fence openings present.  Endpoints for each fence type were 

documented using a handheld GPS unit.  We classified 10 types of fencing based 

on height and construction:   

Type A:  305-cm (120-in) chain-link, 3 strands of barbed wire on top 
Type B:  244-cm (96-in) chain-link, 3 strands of barbed wire on top 
Type C:  213- to 244-cm (84- to 96-in) chain-link 
Type D:  213-cm (84-in) chain-link, 3 strands of barbed wire on top 
Type E:  213-cm (84-in) chain-link 
Type F:  183- to 213-cm (72- to 84-in) chain-link, plus 30-61 cm (12-24 in) 
buried 
Type G:  183-cm (72-in) chain-link, 3 strands of barbed wire on top 
Type H:  183-cm (72-in) chain-link 
Type  I:   91- to 137-cm (36- to 54-in) chain-link 
Type  J:   Other:  213-cm (84-in) plastic mesh (5-cm [2-in] squares); 183-cm 
(72-in) wood-panel; 91- to 137-cm (36- to 54-in) wire mesh (15-cm [6-in] 
squares); 5 strands barbed wire (137 cm [54 in] tall)  
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For each airport with chain-link fencing (Types A–I) around >25% of the airport 

perimeter, we used a handheld GPS unit to document fence openings that could be 

exploited by wildlife for entry onto the airfield.  Where access was granted, we 

documented all fence openings ≥7.6 cm (3.0 in), based on our assumption that such 

openings would allow animals opossum-sized and larger to pass through.  Generally, we 

did not document openings in or under wire-mesh (Type J) fences because the mesh size 

itself was large enough to allow passage by animals.  For all other fence types, we 

classified seven types of openings: 

Break:  Opening of < 20 meters between two segments of a fenceline (e.g., 
where a driveway or pedestrian corridor occurred); Sections where the 
fenceline is broken by > 20 meters were considered to be unfenced portions of 
the airfield. 
Culvert:  Open culvert underneath fence 
Dig-hole:  Hole excavated underneath fence 
Gap:  Open space between bottom of fence and the ground, or between doors 
of a gate in the fenceline 
Hole:  Missing portion of a fence created by chewing/gnawing or other 
destructive action 
Warp:  Open space between bottom of fence and the ground, caused by 
warping or other physical damage to bottom of fence 
Other:  Actions outside the fenceline that have essentially eliminated 
effectiveness of the fence in preventing larger mammals from jumping over it 
(e.g, by raising the height of a road or filling a ditch with gravel) 
 

GIS within Airport Boundaries 

After we recorded presence and location of habitat patches, fence types, and fence 

openings at each airport, we used ArcMap (ArcGIS 9) to create digital maps of the 

features.  First, we downloaded geographic raster data of Indiana counties where study 

airports were located (generated in 2003 by the USDA NAIP, provided by the IGS 

[http://129.79.145.5/arcims/statewide/index.html]).  The sid. file for each raster download 

was added to an ArcMap project and served as a base map for digitizing habitat types.  
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We created an individual feature class for each habitat type and fenceline, and then 

digitized features (including the airport property as a whole) based on data we recorded 

on our field maps.  We attempted to achieve a minimum of 5-m accuracy for all features.  

Locations of fence openings were downloaded from our GPS unit and uploaded onto our 

digital maps. 

Following completion of the maps, we used the Calculate Area tool in ArcMap to 

determine the area (m2) of each polygon.  Polygon areas were summed for each habitat 

type and converted to a percentage of the total airport area.  Additionally, we calculated 

the perimeter of each airport, length of each fence type, proportion of airport perimeter 

for each fence type, and number of openings per 100 m of fence for each airport.   

GIS Outside Airport Boundaries 

We used ArcMap (ArcGIS 9) to create digital habitat maps for the area within a 10-km 

radius of the DeKalb County, Warsaw Municipal, and South Bend Regional airports.  

The 10-km radius was based on a center point established at the midpoint of the 

horizontal and vertical axes of the airport boundary.  For the Warsaw and South Bend 

airports (which had completely fenced airfields), we used the fenceline as the airport 

boundary.  For the DeKalb airport (which had little fencing or other obvious boundary 

markers), we used an official property boundary provided to us by airport personnel.  A 

northern portion of the 10-km radius around South Bend Regional Airport extended into 

the state of Michigan; we mapped habitat only within the state of Indiana.  

We first downloaded aerial imagery of counties where the three airports were 

located (raster data generated in 2003 by the USDA NAIP, provided by the IGS 

[http://129.79.145.5/arcims/statewide/index.html]).  The sid. file for each raster download 
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was added to an ArcMap project and served as a base map for digitizing airport 

boundaries and habitat types.  We created individual feature classes for each habitat type 

and then digitized polygon features based on our interpretation of landscape features 

visible on the aerial imagery.  We attempted to achieve a minimum of 50-m accuracy for 

all habitat types.  Following completion of digitizing habitat types, we used the Calculate 

Area tool in ArcMap to determine the area (m2) of each habitat polygon.  Polygon areas 

were summed for each habitat type and converted to a percentage of the total area within 

the 10-km radius, minus the area of the airport. 

We created 13 habitat classifications based on general habitat niches occupied by 

various wildlife taxa, potential for certain habitats to act as wildlife attractants, and ability 

to differentiate habitat types via aerial photo interpretation.  Habitat classifications 

consisted of barren, forest/woods, grassland, heavy development, moderate development, 

open wetland, pasture, pond/river, recreational field, agriculture, shrubland, wooded 

wetland, and other.  We defined barren habitat as any area appearing to consist of bare 

soil or rock (e.g., gravel pits).  Forest/woods habitat consisted of wooded areas having a 

closed canopy and lacking any visual evidence of standing water.  Grassland habitat was 

defined as grassy habitat that did not appear to be pasture, lawn, recreational field, or 

wetland; CREP fields were included in grassland habitat.  Heavy development consisted 

of relatively large, contiguous expanses of buildings and paved surfaces that appeared to 

have few or no biotic features.  Moderate development consisted of developed areas that 

contained biotic features and, therefore, had some potential as wildlife habitat (e.g., 

residential areas containing trees and grass, highways with grassy margins or medians).  

Open wetland was defined as wetland habitat having open canopy and an abundance of 
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herbaceous vegetation (e.g., wet meadows, marshes, ponds with emergent vegetation).  

Pasture, although difficult at times to differentiate from grassland habitat, consisted of 

grassy areas with obvious signs of use by cattle (e.g., much visible soil, presence of small 

ponds, mud holes, or scattered shade trees, adjacency to farmyard).  We defined 

pond/river habitat as permanent bodies of water having obvious boundaries and little or 

no emergent vegetation. Recreational fields included golf courses, baseball diamonds, 

school fields, and other tree-less green space in parks or campuses.  Agriculture was 

defined as fields consisting of corn, sorghum, soybean, or other crops (we were unable to 

identify particular crop types); crop fields were distinguished from other green habitats 

(e.g., grassland, pasture) by combinations of color, area, visual evidence of plowing, and 

uniformity of vegetation height.  Shrubland habitat was defined as non-wetland habitat 

consisting of a mix of grass, shrubs, and young trees.  Wooded wetland habitat consisted 

of wetlands with an appreciable number of overstory trees (or extensive shrub layer), but 

having some breaks in the canopy or other obvious differentiation from upland forest 

(e.g., tree height).  We used GIS data from the National Wetland Inventory (1971-1992; 

provided by the IGS [http://129.79.145.5/arcims/statewide/index.html]) to help identify 

open and wooded wetland habitats when presence of water was not obvious on aerial 

imagery.  Finally, other habitat was defined as any area that we could not identify on 

aerial imagery or that did not clearly fit into one of the other 12 habitat classifications; 

examples included composting sites, cemeteries, and municipal parks having a fair 

number of trees. 

Pilot Questionnaires 
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We sent 50 copies of a questionnaire (Appendix) to the operating manager of each 

airport, who agreed to distribute the questionnaires among the airport’s most regular 

pilots.  Questionnaires were sent with addressed, stamped envelopes and returned 

individually via mail between 1 October 2005 and 1 January 2006.  The questionnaire 

was designed to assess the opinions and experiences (with respect to wildlife hazards) of 

pilots who regularly used at least one of the 10 participating airports.   

We note that readers should exercise caution when interpreting results of 

volunteer, mail-only surveys such as ours.  Potential inferences are limited because we 

cannot guarantee that the respondents represented a random sample of pilots who used 

the participating airports.  For example, pilots who generally did not encounter wildlife 

during their flights may have been less likely to return a questionnaire than those who felt 

that wildlife hazards were especially problematic.  However, our primary goals for the 

questionnaire were to gain a preliminary understanding of 1) pilot attitudes concerning 

wildlife hazards at Indiana airports and 2) opinions regarding management techniques.   

FAA Strike Database 

The Sandusky, Ohio Field Station of the USDA/APHIS/WS/National Wildlife Research 

Center maintains the National Wildlife Strike Database, which catalogs all reported 

wildlife strikes at airports in the U.S.  For each wildlife strike, the database contains 

information on location, timing, species struck, weather conditions, altitude and speed of 

aircraft at impact, and damage to aircraft for the period of 1990-present.  We requested 

all strike data from participating airports on 1 October 2005 from the database manager at 

Sandusky.  Here, we report a simplified version of the strike data for each of the 

participating airports.  We note, however, that only about 20% of all wildlife strikes are 
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reported (Cleary et al. 2003).  Thus, the wildlife strikes depicted here are certainly an 

underestimate of the true number of strikes at our study airports. 

RESULTS 

Wildlife Inventories 

Spotlight Surveys 

The number of hazardous species observed during spotlight surveys varied greatly among 

airports (Table 2).  We observed up to 50 deer (across all surveys; up to 20 on any 

individual survey) and 9 coyotes during our surveys.  Only three airports had no deer 

inside the property boundaries during spotlight surveys, whereas six airports had no 

coyotes (Table 2).  Encounters of smaller mammals also varied greatly among airport 

properties (Table 2). 

Bird Surveys 

Of the 16 species groups identified by Dolbeer et al. (2000) as hazardous to aircraft 

(Table 3), American kestrel, blackbirds-starling, crows-ravens, mourning dove, 

shorebirds, sparrows, and swallows were present at 9-10 of the airport properties at some 

point during the year.  Geese, hawks (buteos), and vultures were present at 7-8 of the 

airport properties; and ducks, herons, and rock doves were present at 5-6.  Gulls, eagles, 

and cranes each were present at only 1 airport property.  Bird abundances also varied 

widely depending on species and location.  Among all airports, the most numerous 

species group was blackbirds-starling (including red-winged blackbirds, eastern 

meadowlarks, brown-headed cowbirds, common grackles, and European starlings), 

although the totals were skewed somewhat by a flock of blackbirds (over 2000 



 

 102

individuals) that was observed during one of the fall surveys at DeKalb Co. Airport 

(Table 3).   

 

Remote Camera Surveys 

At least 26 species were observed on airport properties with remote cameras (we were 

unable to identify 25 individuals observed on camera) (Table 4; Plates. 1-5).  Coyotes 

were observed at seven airports (the highest number of observations at an individual 

airport was 15), and deer were observed at six (the highest number of observations at an 

individual airport was 39).  Due to increased battery life in winter, cameras were used for 

30,159 hr in winter (totaled across all airports), which was much more than during any 

other season (at most, 9,394 hr).  As a result, we surveyed more individual animals 

during the winter season (254 observations across all species; 0.00842 animals per 

camera-hr) than during other seasons (226 observations for spring, summer, and fall 

combined; 0.00818 animals per c-hr).  In particular, during winter we observed more deer 

(92 observations in winter; 50 observations across the other three seasons combined) and 

coyotes (35 observations in winter; 5 observations across the other three seasons 

combined) via camera. 

Opportunistic Observations 

Twenty-one observations of coyotes (across eight airports), 30 of deer (across four 

airports), 32 of red-tailed hawks (across six airports), 34 of turkey vultures (across six 

airports) and 36 of Canada geese (across five airports) were tallied opportunistically 

during other research activities.   

Habitat and Fencing Evaluation 
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On-Site Assessments and GIS within Airport Boundaries 

Habitat types present at all airport properties were runway systems, other developed 

areas, and short grass (Table 5; Figs. 11-30).  The next most commonly occurring 

habitats were scrub-shrub (n = 8 airports), tall grass (n = 8), weedy ditches (n = 8), 

medium grass (n = 7), bare earth/construction (n = 6), and soybean fields (n = 6).  Corn 

fields, dirt/gravel piles, ephemeral pools, gravel roads, permanent water, and woodlots 

each were present at five of the airports (Table 5).  On average, airport habitats consisted 

mainly of short grass (40.2% of total airport area), soybean fields (10.3%), corn fields 

(9.5%), runway systems (8.1%), other development (6.6%), woodlots (5.2%), medium 

grass (4.8%), tall grass (4.6%), and hayfields (3.2%); however, averages for each of the 

hayfield and tall grass habitats were skewed by a large value at one airport (Table 5).  All 

other habitat types averaged ≤1.3% of total airport area, but alfalfa and sorghum fields 

each represented ~10% at airports where they occurred. 

At least two types of wildlife attractants were present on each airport property, but 

most airports had five to seven types (Table 6).  The most common attractants were 

standing water (ephemeral) and open culverts, which were present at eight airports each 

(Table 6).  Other common attractants were crop fields, woodlot refugia, and gravel piles.  

Attractants adjacent to airports included a state park (primarily wooded) next to Anderson 

Municipal, a golf course next to Clark County, a woodlot that we suspect is the site of a 

vulture roost next to DeKalb County, ponds in commercial lots next to Greenwood 

Municipal, ponds and feeding operations in pastures next to Huntingburg, a major river 

(Wabash River) and ponds near Purdue University, a pond and park next to Putnam 

County, a composting operation and golf course next to South Bend Regional, and a pond 
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within a residential neighborhood next to Warsaw.  Crop fields were adjacent to almost 

all airports.  Of particular concern were circumstances at several airports (Anderson 

Municipal, Clark County, Huntingburg, and Putnam County) where runway systems 

occurred between sources of shelter (e.g., woodlot refugia) and sources of food (e.g., 

cropfields, streams) for wildlife. 

Each airport used Type G, H, I, or J fencing along at least a portion of its 

perimeter, and seven airports used only those types (Table 7; Figs. 31-40).  Proportion of 

airport perimeter fenced ranged from 7.5% to 100% among all airports, but most 

perimeters were >40% fenced (Table 7).  Only four airports (Greenwood Municipal, 

Purdue University, South Bend Regional, and Warsaw Municipal) were completely 

fenced; however, all four had openings in their fencelines that would allow coyotes and, 

perhaps, deer access to the airfields (Table 8; Figs. 31-40).  Most airports having >25% of 

the perimeter fenced with chain-link fencing had 0.2–0.5 openings per 100 m of fence, 

with gaps and dig-holes being the most common openings (Table 8).  Purdue University 

Airport had 1.3 openings per 100 m of fence, due largely to a segment of plastic-mesh 

fencing with 59 holes chewed through it.      

GIS Outside Airport Boundaries 

Landscapes within a 10-km radius of DeKalb County, South Bend Regional, and Warsaw 

Municipal airports averaged approximately 40% agriculture, 22% moderate development, 

15% forest/woods, and 7% grassland habitat; all other habitat types represented ≤4% of 

the landscape (Table 9; Figs. 41-46).  With the exception of a relatively large patch of 

forest/woods and a large patch of moderate development, habitat types appeared to be 

evenly distributed across the landscape surrounding DeKalb County Airport (Figs. 41-
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42).  However, some habitat types appeared to be more clustered around the South Bend 

Regional (Figs. 43-44) and Warsaw Municipal airports (Figs. 45-46).  At South Bend, 

large patches of development and recreational fields, which harbor wildlife attractants 

like fast-food restaurants and trash receptacles, dominated the landscape south and east of 

the airport.  The remaining landscape consisted primarily of agriculture.  At Warsaw, 

development was clustered south of the airport and agriculture was abundant to the east, 

north, and west.  Of important note is that relatively large ponds occurred within the 10-

km radius surrounding Warsaw Municipal Airport (Fig. 45), and they amounted to 2.8–

4.7 times the proportion of ponds/rivers in landscapes surrounding DeKalb County and 

South Bend Regional airports.   

Pilot Questionnaires 

Of 500 surveys distributed among airport managers, 84 (16.8%) were returned.  The 

cover sheet, questionnaire, and a tally of responses are presented in the Appendix.  

Respondents largely were experiences pilots—55% reported over 20 years experience 

operating aircraft (Question 1).  The level of participation in the survey was mixed 

among airports (e.g., 18 respondents indicated that Purdue University Airport was their 

primary airport, whereas only 2 indicated that Greenwood Municipal Airport was their 

primary airport; Question 3).  Fifty-eight of 84 (69%) respondents reported that they have 

had to alter flight, landing, or take-off plans because of wildlife occurring within air 

operations areas at least once during the past year (Question 5), but only 21 of 84 (25%) 

reported that they had been involved in a wildlife collision during the past year (Question 

6).  Forty-nine of 83 (59%) respondents felt that their primary airport needed some level 

of improvement in terms of wildlife management, whereas 34 (41%) respondents felt that 
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improvement was not needed, or had no opinion (Question 7).  Sixty-five of 84 

respondents (77%) had been in at least one wildlife collision during their entire course of 

experience as a pilot (Question 8); small birds and geese were struck most often 

(Question 9).   

 Only three respondents reported that wildlife hazards had caused them to 

permanently cease operating aircraft at a particular airport (Question 10).  However, 36 

of 81 respondents (44%) felt that wildlife populations at airports in Indiana were either 

hazardous or very hazardous in terms of their potential for aircraft collisions (Question 

11).  An additional 36 respondents (44%) reported “somewhat hazardous” for the same 

question; thus, only 9 respondents (11%) felt that wildlife were not hazardous at Indiana 

airports.  Although most respondents felt that wildlife on Indiana airports were 

problematic, they did not appear to accept potential management methods equally 

(Question 12).  Fifty-six of 81 respondents (69%) supported or strongly supported 

construction of exclosures (fencing), and 55 of 82 respondents (67%) supported or 

strongly supported use of wildlife deterrents.  However, only 35 of 82 respondents (43%) 

indicated support for modification/elimination of wildlife habitat, and only 31 of 82 

respondents (38%) indicated support for direct removal of wildlife.   

FAA Strike Database 

Seventy-four wildlife strikes were reported from South Bend Regional Airport and 10 

from Purdue University Airport (Table 10 [electronic only]).  No other airport reported 

more than five strikes.  Thirty-nine of the entries reported strikes with “unknown birds”, 

nine with hawks (unknown hawks or red-tailed hawks), eight with gulls, seven with 

sparrows, and six with European starlings.  Seven mammals were reported as being 
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struck by aircraft—five white-tailed deer, one skunk, and one coyote.  Total losses were 

$2,520,522 (repairs and other costs) and 4690 hours.  Eight entries reported an aborted 

take-off, four reported a precautionary landing, and one reported an engine shut-down. 

DISCUSSION 

Our research demonstrated that despite the lack of published information concerning 

wildlife hazards at small airports, the potential for significant wildlife strikes at such sites 

in Indiana does exist.  Our habitat assessments, wildlife surveys, and pilot questionnaires 

all indicated that more emphasis should be given to the problem of wildlife strikes by 

airport personnel at general aviation airports in Indiana. 

Wildlife Inventories 

Our observations from spotlight surveys, remote camera surveys, and opportunistic 

sightings indicated that deer and coyotes are common visitors to air operations areas of 

several focal airports.  Across seasons and surveys, the total number of deer at focal 

airports ranged from 0-92, and the total number of coyotes ranged from 0-28 (Table 11).  

Dolbeer et al. (2000) ranked deer and coyotes as the top two mammalian aviation hazards 

in the U.S. (number 1 and 15 overall, respectively), thus their presence in critical airport 

areas warrants concern.  However, there was a great deal of variation in the number of 

deer and coyotes surveyed across airports.  Purdue University Airport was the only focal 

airport where we observed no deer or coyotes, and interestingly, it has a stringent wildlife 

hazard management program (Betty Stansbury, personal communication).  Furthermore, 

completely-fenced airports (Greenwood, Purdue, South Bend, Warsaw) appeared to have 

fewer problems with deer and coyotes (total observations; mean = 6.0 and 2.8, 

respectively) than airports that were not completely fenced (45.5 and 10.7).   Although 
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other species of mammals observed within airport properties (e.g., opossums, raccoons, 

domestic cats) rarely cause substantial damage (Cleary et al. 2005), their presence is 

noteworthy and should be considered a hazard because they are struck regularly by 

aircraft.  

 Results of our bird surveys also indicated that many hazardous species are present 

regularly at Indiana airports.  Of the 19 species and species groups identified by Dolbeer 

et al. (2000) as most hazardous to aircraft, 16 were present (and in many cases, abundant) 

at Indiana airports.  Only osprey (rare in Indiana), pelicans (rare in Indiana), and owls 

(nocturnal and thus not active during our surveys) were not observed.  Furthermore, the 

two most hazardous species groups, vultures and geese, were observed at 7 and 8 

airports, respectively.  Certainly, many airport environments are attractive to a variety of 

bird species for roosting, nesting, feeding, and loafing. 

Habitat and Fencing Evaluation 

Habitat and fencing regimes likely explain hazards posed by mammals at the airports we 

studied.  Deer appeared to be abundant either within or just outside all airport properties, 

except Greenwood Municipal and Richmond Municipal.  Woodlots and shrublands are 

preferred habitats for deer and other mammals with respect to shelter and food, and a lack 

of both habitats on or near Greenwood Municipal and Richmond Municipal airports may 

explain why we rarely observed deer at those locations.  Although much of Richmond 

Municipal is crop-field habitat and, therefore, a potential feeding area for deer, other crop 

fields immediately surround the airport and may act as a buffer by satiating deer 

associated with remote woodlots outside the property.  Likewise, Greenwood Municipal 

is bordered by development to the east and crop fields to the west, thereby providing little 
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incentive for deer inhabiting remote woodlots to cross those habitat patches to feed on 

crops within the fenceline.  Woodlot or shrubland habitats were present in or adjacent to 

all other airports, thus fencing was the only barrier preventing deer, coyote, raccoons, and 

opossums from accessing airfields.  However, based on our analyses of fence openings, 

none of the focal airports had a fencing regime adequate to exclude all individuals from 

the airfields.  For example, Greenwood Municipal, Purdue University, and South Bend 

Regional airports had completely fenced airfields, but all fences were seriously flawed.  

The fence at Greenwood had a 5-m break and several large (>1 m) gaps where a stream 

entered and exited the property; the stream attracted raccoons (as many as 5 individuals 

observed together at one time) and the fence openings allowed access to the airfield.  

Although we did not observe deer, coyotes, or raccoons within the fenceline at Purdue, a 

portion of the fenceline consisted of plastic mesh and contained numerous holes that had 

been chewed by animals.  These holes, and others dug by coyotes, certainly provided 

access to the airfield; in fact, coyotes were observed within the fenceline several times by 

airport personnel.  At South Bend, numerous dig-holes allowed opossums, raccoons, 

coyotes, and perhaps deer to cross under the fenceline.   

Although no fencing regimes were completely mammal-proof, our results 

suggested that chain-link fencing around the entire perimeter of an airport was effective 

in minimizing abundance of mammals on airfields.  We tended to observe mammals 

within airport properties much more frequently at airports with incomplete fencing than 

at Greenwood Municipal, Purdue University, South Bend Regional, or Warsaw 

Municipal airports, suggesting that animals were less likely to use an airfield if access to 

it required passage through a fence opening. 
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Presence of red-tailed hawks and American kestrels appeared to be linked 

strongly to habitats occurring within and immediately adjacent to the airports we studied.  

Almost all airports had a resident pair of red-tailed hawks that were observed perching on 

weather stations, light towers, or other objects on airfields.  American kestrels also were 

observed hunting along taxiways and perching on runway lights at most airports.  Notable 

exceptions, however, were Putnam County and Richmond Municipal airports, where both 

species were relatively uncommon.  We suspect that the presence of hawks and kestrels 

was dependent on availability of grassland habitat (hayfields and short/medium/tall grass) 

and, perhaps, perches.  Grassy areas provide habitat for rabbits, ground squirrels, voles, 

and other small mammals that constitute major food items for hawks and kestrels, and 

perches serve as resting areas and hunting platforms.  Perches were rare at Richmond, 

and grassland habitat (short, medium, or tall) represented a much lower percentage (9%) 

of total airport area than at other airports (28–82%).  Although perches and grassland 

habitat were readily available at Putnam County, voles and other rodents may have been 

rare because the airfield had undergone major reconstruction and re-seeding just prior to 

our study. 

 Geese, ducks, and herons typically are associated with wetland habitats; however, 

large expanses of short grass also may attract geese.  We did not observe any of these 

groups of birds at Richmond Municipal, probably because ponds and rivers were absent 

from the airport property and rare in the surrounding landscape.  Geese, ducks, or herons 

were observed at all other airports except Anderson Municipal.  Presence of geese and 

ducks at Greenwood Municipal, Putnam County, South Bend Regional, and Warsaw 

Municipal airports was clearly linked to occurrence of ponds on or adjacent to airport 



 

 111

properties.  Herons were most notable at DeKalb County, Purdue University, and 

Warsaw Municipal airports, where large bodies of water in surrounding landscapes 

provided ample habitat.  Individual herons were observed in a permanent stream at 

Greenwood Municipal and at an ephemeral pool (where chorus frogs were breeding) at 

Clark County.  For the most part, geese tended to occur in flocks and used short-grass 

habitat on airfields only temporarily (several days to 2 weeks, according to reports from 

some airport managers).  These flocks tended to occur during late summer and fall and, 

therefore, probably constituted migratory groups using airfields as stopover habitat.  

However, we did note resident pairs at Putnam County and South Bend Regional airports, 

where small ponds were present either on or adjacent to airfields.  In fact, two pairs of 

geese nested within the airport boundary at South Bend.  Of particular concern was a pair 

of geese at Putnam County that frequently loafed on the runway during the spring. 

Crows and starlings often exhibit flocking behavior, which can pose a serious 

hazard to aviation.  Moreover, populations of crows and starlings often are associated 

with human development and urban areas because they are sources of food or loafing 

areas (e.g., fast food restaurants, large trash receptacles, recreational fields, powerlines, 

etc.).  Most of the airports we studied consisted of ≥10% developed habitat (including 

runway systems) and occurred within several kilometers of urban areas.  We observed 

large (>50 individuals) flocks of crows at Anderson Municipal, Richmond Municipal, 

and South Bend Regional airports.  Large flocks of starlings occurred at all airports 

except Putnam County, but they appeared to be most hazardous at Anderson Municipal, 

Greenwood Municipal, Huntingburg, Purdue University, and South Bend Regional 

airports, based on flock sizes and tendency to fly over runways.  We observed starlings 
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on multiple occasions repeatedly flying over the runway at Greenwood Municipal and 

returning to open hangars with nesting material.  Also of note were flocks of starlings and 

cowbirds that gathered at cattle-feed stations in a pasture next to Huntingburg airport.  

These flocks were especially hazardous because they moved frequently and without 

warning when they were startled by hawks overhead or by cattle in the pasture.    

Pilot Questionnaires 

Data from the questionnaire clearly indicated that pilots using focal airports were familiar 

with wildlife hazards.  Sixty-nine percent of respondents reported that they had altered 

aircraft operation due to wildlife hazards within the past year, and 25% reported 

involvement in a wildlife strike during the past year.  Furthermore, 88% of respondents 

felt that wildlife populations at Indiana airports were at least “somewhat hazardous”.  

Because of the high level of exposure to wildlife hazards experienced by respondents, we 

were surprised at the relatively low level of support for wildlife hazard management 

expressed by respondents.  Although 70% of respondents supported the use of fencing or 

wildlife deterrents, only 43% supported modification/elimination of wildlife habitat, and 

merely 38% of respondents supported lethal removal of wildlife.  We suspect that the 

relatively low level of support for wildlife hazard management at airports stemmed from 

the fact that wildlife were observed on airport properties without incident much more 

often that actual wildlife strikes occurred.  This may have led respondents to believe that 

wildlife species are not problematic on airport properties because they “usually get out of 

the way”.  However, pilots and other airport personnel should be aware of the seriousness 

of the wildlife hazard problem at airports.   

FAA Strike Database 
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There were relatively many wildlife strikes records in the FAA database from South 

Bend and Purdue compared to the other focal airports.  However, we suspect that the 

number of strikes reported to the FAA from various airports may better reflect the 

willingness of airport personnel to report strikes than the actual number of strikes that 

occurred at each airport.  Universally, only about 20% of all wildlife strikes are thought 

to be reported to the FAA (USDA/APHIS 2004).  Certainly, all airport personnel should 

be encouraged to report all wildlife strikes to the FAA on form 5200-7 (http://wildlife-

mitigation.tc.faa.gov).   

MANAGEMENT RECOMMENDATIONS 

The science of wildlife damage management is growing and prospering (Conover 2002); 

new technologies and refinements in techniques are emerging continuously.  Many new 

methods are especially relevant to managing hazardous wildlife on airport properties.  

For example, a new, relatively inexpensive brand of electric fence (Electrobraid™; 

Yarmouth , Nova Scotia, Canada) has shown promise in excluding free-ranging deer 

(Seamans and VerCauteren 2006), and a new motion-activated laser hazing system that 

was evaluated recently may prove useful for dispersing Canada geese from airports and 

other areas where they are not desirable (Werner and Clark 2006).  Effigies of dead 

conspecifics recently have shown to be effective in dispersing vultures (Avery et al. 

2002, Seamans 2004).  However, despite recent progress in developing new methods, we 

stress that it is imperative airport personnel be familiar with established techniques in 

wildlife hazard management at airports, such as those summarized in Cleary and Dolbeer 

(1999).  Most wildlife hazard problems facing airport managers can be addressed with 

traditional methods, such as reducing wildlife cover and removing standing water.  Here, 
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we focus on new technologies and specific management recommendations that might 

benefit our focal airports.    

 Deer and coyotes represent the most worrisome mammalian hazards at airports.  

Exclusion is the preferred method (and in many cases, the only effective method) of 

preventing deer and coyotes from using large areas (Conover 2002) and can be 

accomplished with proper fencing.  Researchers have demonstrated that a 2.4-m fence (8 

ft) usually can exclude non-stressed deer on level ground (Falk et al. 1978).  However, 

because motivated deer can clear a 2.4-m fence, 3-m (10 ft) fencing may be more 

appropriate in airport environments where complete exclusion is desired (VerCauteren et 

al. 2006).  Despite the effectiveness and durability of fences, installation is expensive 

(e.g., 2.4-m chain link fencing costs >$20/m; VerCauteren et al. 2006).  At airports where 

complete exclosure with tall fencing is prohibitively expensive, we suggest airport 

managers consider newer alternatives, such as Electrobraid™ (Seamans and VerCauteren 

2006).  Electrobraid™ has not yet been evaluated experimentally in an airport 

environment, but initial experiments on smaller areas appear promising (Seamans and 

VerCauteren 2006). 

 Although very tall (i.e., 3-m) chain-link or woven-wire fences are ideal in airport 

settings, we propose that a shorter, well maintained 2.4-m fence may be more effective in 

excluding deer and coyotes than a 3-m fence with an abundance of gaps and holes.  A 25-

cm gap at the bottom of a fence can allow an adult deer to get through (Falk et al. 1978, 

Palmer et al. 1985, Feldhamer et al. 1986), and when properly motivated, adult deer can 

pass through a 19-cm gap (Feldhamer et al. 1986).  Many of the focal airports in the 

present study had fences with an abundance of gaps that could allow passage for deer and 
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coyotes.  In many respects, a fence is only as effective as its weakest section.  We 

advocate regular fence maintenance and immediate repair of damaged fences.  Many 

problems associated with fence gaps can be eliminated by using a buried-fence design.  

We strongly recommend that buried fences are considered when installing new airport 

fences.   

We stress that there should be no tolerance for deer or coyotes inside airport 

fences (Cleary and Dolbeer 1999).  At several focal airports we observed that personnel 

did not seem overly bothered by deer and coyotes near runways, because the animals 

usually did not cause problems (this attitude also was reflected in pilot surveys).  

Individual animals that have managed to breach wildlife fencing and occupy air 

operations areas should be removed (by lethal means if necessary) as soon as possible 

with appropriate authorization.  Deer are intelligent and learn from observing others; 

thus, as individual deer learn to penetrate fences, continued effectiveness of the barrier 

depends on prompt removal of those individuals (VerCauteren et al. 2006).   

 Birds often present more challenging management problems than mammals 

because they are not deterred by fencing.  Thus, to manage hazardous birds effectively in 

airport environments, one usually must rely on habitat management or fear-provoking 

stimuli (Conover 2002).  Fear provoking stimuli (frightening devices such as propane 

cannons and scarecrows) can successfully repel birds from critical areas; however, their 

effects usually are temporary (Conover 2002).  Birds quickly become accustomed to 

frightening devices and learn to ignore them.  One possible exception, however, is the use 

of dead conspecifics or effigies of dead conspecifics to repel some bird species.  Research 

on vultures (Avery et al. 2002, Seamans 2004) and gulls (Stout et al. 1975, Stout and 
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Schwab 1979) has demonstrated that such species are repelled by effigies of dead 

conspecifics or actual dead conspecifics in several settings.  Similar preliminary research 

with Canada geese has produced mixed results (Seamans and Bernhardt 2004).  

Importantly, the repelling effect of such stimuli for vultures and gulls appears to be more 

permanent than other frightening devices.  Airports with persistent vulture or gull hazards 

should investigate the use of dead bird effigies to repel unwanted birds.  This emerging 

method may be especially useful for repelling vultures at nocturnal roosts.  Vultures, 

which are increasing in number throughout much of the U.S. (Avery 2004), usually do 

not range far from nocturnal roosts (DeVault et al. 2004).  Dispersal from nocturnal 

roosts on or near airport properties should greatly decrease the number of vultures present 

near critical areas. 

 Although dead bird effigies may reduce hazards associated with some species, 

habitat management may provide a more permanent solution to bird hazards at airports in 

general.  The overall goal of habitat management at airports is to reduce the availability 

and/or quality of food, water, cover, and loafing sites for hazardous species.  As such, 

most biologists agree that wetlands, standing water, cereal grains, open trash receptacles, 

and woodlots should not be present in airport environments (Cleary and Dolbeer 1999).  

Also, hangars and other buildings should be kept closed, and all openings in buildings 

should be plugged with wood or sheet metal to prevent access to eaves or other nesting 

platforms by European starlings.  We also note that large flocks of mourning doves and 

killdeer could be reduced by paving gravel roadways and parking areas, and by 

minimizing the amount of bare earth present on property by planting grass or paving. 
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Many small airports in the Midwest (including several focal airports in the current 

study) produce crops on airport properties to increase revenue.  Crops such as corn and 

soybeans attract wildlife and ideally should not be present near air operations areas.  

However, where agricultural operations are deemed necessary on airport properties, post-

harvest crop residue should be plowed under to minimize attractiveness to wildlife during 

the non-growing season (Cleary and Dolbeer 1999).   

Although some habitat management practices are well accepted and considered 

standard operating procedure, there is no clear consensus concerning vegetation 

management (turf grass management in particular), because no single vegetation type is 

unattractive to all species (Barras and Seamans 2002).  For example, biologists disagree 

about the proper grass height in airport infields.  Airports commonly maintain grass 

height from 5-45 cm, and few data are available to support recommendations of various 

strategies (Barras and Seamans 2002).  Tall vegetation may repel some birds due to 

decreased visibility, feeding activity, and ground movements, but may attract some 

ground-nesting species.  Furthermore, tall grass supports large populations of prey 

including insects and rodents, which attract raptors.  Conversely, short vegetation may 

provide loafing and feeding areas for gulls and some insectivorous birds (Barras and 

Seamans 2002), but discourages nesting by blackbirds, meadowlarks, and some sparrows.  

We suggest that individual airport managers assess their respective properties and choose 

the most appropriate vegetation in consultation with a qualified wildlife biologist. 

 One promising emerging technique in vegetation management at airports is the 

planting of tall fescue (Festuca arundinacea), a bunch grass that commonly is infected 

with the fungus Neotyphodium coenophialum (Clay and Holah 1999, Barras and Seamans 
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2002).  The fungus acts as a repellant to herbivores such as Canada geese and small 

mammals (which attract raptors).  Current studies are underway to determine the efficacy 

of planting and propagating tall fescue in airport environments.   
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Table 1.  Characteristics of 10 airports chosen as study sites for an investigation of wildlife hazards at general aviation airports in 
Indiana in 2005-2006.  Acreages are based on information provided on the INDOT website 
(http://www.in.gov/dot/modetrans/airports/aerials.html). 
 

AIRPORT ACREAGE RUNWAY LNG (ft) 
BASED 

AIRCRAFT 
SPOTLIGHT 

TRANSECT LNG (m) 
BIRD TRANSECT 

LNG (m) 
Anderson 500 5400 81 5334 1133 
Clark Co. 420 5500 135 6429 1478 
DeKalb Co. 600 5000 56 2009 1532 
Greenwood 148 4901 107 1644 1009 
Huntingburg 480 5000 33 4720 1323 
Purdue 500 6600 105 7929 1848 
Putnam Co. 192 5000 25 1633 790 
Richmond 702 5500 32 4941 1086 
South Bend 1550 8412 58 7339 788 
Warsaw 557 6000 49 2783 1139 
      
*BASED AIRCRAFT = total number of aircraft (single engine, multi-engine, jet) permanently based at airport 
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Table 2.  Wildlife observed during eight spotlight surveys at each of 10 airports in Indiana in 2005-2006. 
 

AIRPORT PROPERTY DEER 
DEER 
HIGH COYOTE OPOSSUM RACCOON SKUNK

DOM. 
CAT 

RED 
FOX RABBIT

Anderson Inside 50 20   2 8 1 1   1 
 Outside         3         
Clark Co. Inside 26 7 9         3 2 
 Outside                   
DeKalb Co. Inside 18 5   1 4 2 1   2 
 Outside                   
Greenwood Inside         1       1 
 Outside     1             
Huntingburg Inside 4 4 2   1   1   5 
 Outside 4 2             1 
Purdue Inside       1         2 
 Outside 3 2               
Putnam Co. Inside 19 7     4 1   1   
 Outside                   
Richmond Inside 1 1     2 4 2     
 Outside                   
South Bend Inside 7 4 2 4     1   6 
 Outside 1 1               
Warsaw Inside     1 1 1 11 1     
 Outside                   
           
*PROPERTY = Inside or Outside airport property as defined by fencing or defined by airport personnel. 
*DEER HIGH = high count of deer during any single survey. 
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Table 3.  Birds observed during eight walking transect surveys at each of 10 airports in Indiana in 2005-2006.  We report only 
hazardous species (as defined by Dolbeer et al. 2000) observed within airport properties.  For each species, the high count for each 
season (of two counts) is reported. 
 

AIRPORT SPECIES Spring
Spring/ 

km Summ 
Summ/ 

km Fall 
Fall/ 
km Winter 

Winter/ 
km Total 

Total/ 
km 

Anderson American Kestrel     3 2.65         3 2.65
 Blackbirds-starling 29 25.66 39 34.51 396 350.44 36 31.86 500 442.48
 Cranes                     
 Crows-ravens 2 1.77 15 13.27 3 2.65 342 302.65 362 320.35
 Ducks                     
 Eagles                     
 Geese                     
 Gulls                     
 Hawks (buteos) 2 1.77 4 3.54 1 0.88 2 1.77 9 7.96
 Herons                     
 Mourning dove 3 2.65 11 9.73 82 72.57 1 0.88 97 85.84
 Rock dove                     
 Shorebirds 18 15.93 16 14.16 10 8.85   0.00 44 38.94
 Sparrows 30 26.55 28 24.78 7 6.19 2 1.77 67 59.29
 Swallows 4 3.54 17 15.04         21 18.58
 Vultures 2 1.77             2 1.77
Clark Co. American Kestrel 1 0.68 5 3.38 1 0.68     7 4.73
 Blackbirds-starling 27 18.24 46 31.08 5 3.38 101 68.24 179 120.95
 Cranes                     
 Crows-ravens 2 1.35 1 0.68     5 3.38 8 5.41
 Ducks                     
 Eagles                     
 Geese 11 7.43 19 12.84         30 20.27
 Gulls                     
 Hawks (buteos) 2 1.35 1 0.68 1 0.68 1 0.68 5 3.38
 Herons                     
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 Mourning dove 1 0.68 3 2.03 27 18.24 3 2.03 34 22.97
 Rock dove     5 3.38     4 2.70 9 6.08
 Shorebirds     22 14.86 15 10.14 5 3.38 42 28.38
 Sparrows 21 14.19 6 4.05 12 8.11 4 2.70 43 29.05
 Swallows 4 2.70 17 11.49         21 14.19
 Vultures 2 1.35             2 1.35
DeKalb Co. American Kestrel     2 1.31     1 0.65 3 1.96
 Blackbirds-starling 45 29.41 25 16.34 2096 1369.93 50 32.68 2216 1448.37
 Cranes                     
 Crows-ravens 7 4.58 6 3.92 1 0.65 16 10.46 30 19.61
 Ducks 5 3.27             5 3.27
 Eagles                     
 Geese 4 2.61     20 13.07     24 15.69
 Gulls     1 0.65         1 0.65
 Hawks (buteos)     1 0.65 1 0.65 2 1.31 4 2.61
 Herons 2 1.31 3 1.96         5 3.27
 Mourning dove 1 0.65 1 0.65 3 1.96     5 3.27
 Rock dove                     
 Shorebirds 1 0.65 72 47.06 14 9.15 1 0.65 88 57.52
 Sparrows 37 24.18 32 20.92 8 5.23 2 1.31 79 51.63
 Swallows 1 0.65 20 13.07         21 13.73
 Vultures 11 7.19 18 11.76 16 10.46     45 29.41
Greenwood American Kestrel             1 0.99 1 0.99
 Blackbirds-starling 75 74.26 132 130.69 330 326.73 130 128.71 667 660.40
 Cranes                     
 Crows-ravens 1 0.99 8 7.92 2 1.98     11 10.89
 Ducks 1 0.99 2 1.98     6 5.94 9 8.91
 Eagles                     
 Geese 2 1.98 1 0.99         3 2.97
 Gulls                     
 Hawks (buteos)         1 0.99 1 0.99 2 1.98
 Herons     1 0.99 1 0.99     2 1.98
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 Mourning dove 3 2.97 112 110.89 31 30.69 31 30.69 177 175.25
 Rock dove 3 2.97 7 6.93 4 3.96     14 13.86
 Shorebirds 5 4.95 39 38.61 3 2.97     47 46.53
 Sparrows 12 11.88 25 24.75 13 12.87 6 5.94 56 55.45
 Swallows 1 0.99 5 4.95         6 5.94
 Vultures                     
Huntingburg American Kestrel 2 1.52 1 0.76         3 2.27
 Blackbirds-starling 125 94.70 199 150.76 269 203.79 28 21.21 621 470.45
 Cranes                     
 Crows-ravens         1 0.76 3 2.27 4 3.03
 Ducks                     
 Eagles                     
 Geese 2 1.52 13 9.85     40 30.30 55 41.67
 Gulls                     
 Hawks (buteos)         1 0.76 2 1.52 3 2.27
 Herons 1 0.76             1 0.76
 Mourning dove     32 24.24 3 2.27 6 4.55 41 31.06
 Rock dove                     
 Shorebirds 3 2.27 19 14.39 6 4.55 6 4.55 34 25.76
 Sparrows 6 4.55 20 15.15 6 4.55 1 0.76 33 25.00
 Swallows 12 9.09 33 25.00 35 26.52     80 60.61
 Vultures         1 0.76     1 0.76
Purdue American Kestrel 1 0.54 3 1.62     1 0.54 5 2.70
 Blackbirds-starling 315 170.27 102 55.14 34 18.38     451 243.78
 Cranes             103 55.68 103 55.68
 Crows-ravens 3 1.62     6 3.24     9 4.86
 Ducks 1 0.54     2 1.08     3 1.62
 Eagles             1 0.54 1 0.54
 Geese                     
 Gulls                     
 Hawks (buteos)     1 0.54 1 0.54 1 0.54 3 1.62
 Herons 1 0.54 1 0.54         2 1.08
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 Mourning dove 30 16.22 68 36.76         98 52.97
 Rock dove     6 3.24         6 3.24
 Shorebirds 8 4.32 15 8.11 1 0.54 1 0.54 25 13.51
 Sparrows 27 14.59 8 4.32 1 0.54 2 1.08 38 20.54
 Swallows 8 4.32 11 5.95         19 10.27
 Vultures             3 1.62 3 1.62
Putnam Co. American Kestrel     1 1.27         1 1.27
 Blackbirds-starling 27 34.18 16 20.25 111 140.51 30 37.97 184 232.91
 Cranes                     
 Crows-ravens 4 5.06 6 7.59     2 2.53 12 15.19
 Ducks 5 6.33     3 3.80     8 10.13
 Eagles                     
 Geese 6 7.59 15 18.99         21 26.58
 Gulls                     
 Hawks (buteos)                     
 Herons 3 3.80             3 3.80
 Mourning dove 6 7.59 2 2.53         8 10.13
 Rock dove     15 18.99         15 18.99
 Shorebirds 4 5.06 1 1.27 1 1.27 3 3.80 9 11.39
 Sparrows 30 37.97 19 24.05 6 7.59 1 1.27 56 70.89
 Swallows 11 13.92 18 22.78         29 36.71
 Vultures 1 1.27         3 3.80 4 5.06
Richmond American Kestrel                     
 Blackbirds-starling 103 94.50 391 358.72 80 73.39 33 30.28 607 556.88
 Cranes                     
 Crows-ravens 6 5.50         2 1.83 8 7.34
 Ducks                     
 Eagles                     
 Geese                     
 Gulls                     
 Hawks (buteos)                     
 Herons                     



 

 128

 Mourning dove     1 0.92 95 87.16 1 0.92 97 88.99
 Rock dove                     
 Shorebirds 29 26.61 37 33.94 4 3.67 1 0.92 71 65.14
 Sparrows 12 11.01 23 21.10 11 10.09 1 0.92 47 43.12
 Swallows     5 4.59 67 61.47     72 66.06
 Vultures         2 1.83     2 1.83
South Bend American Kestrel     9 11.39     1 1.27 10 12.66
 Blackbirds-starling 15 18.99 79 100.00 202 255.70     296 374.68
 Cranes                     
 Crows-ravens 4 5.06     5 6.33 7 8.86 16 20.25
 Ducks 2 2.53             2 2.53
 Eagles                     
 Geese 2 2.53     11 13.92     13 16.46
 Gulls                     
 Hawks (buteos) 1 1.27 2 2.53 1 1.27     4 5.06
 Herons                     
 Mourning dove 2 2.53 1 1.27 24 30.38 69 87.34 96 121.52
 Rock dove                     
 Shorebirds 4 5.06 3 3.80 1 1.27     8 10.13
 Sparrows 11 13.92 27 34.18 8 10.13     46 58.23
 Swallows     3 3.80         3 3.80
 Vultures                     
Warsaw American Kestrel 2 1.75 1 0.88     1 0.88 4 3.51
 Blackbirds-starling 104 91.23 103 90.35 22 19.30 5 4.39 234 205.26
 Cranes                     
 Crows-ravens 1 0.88 4 3.51 2 1.75     7 6.14
 Ducks 2 1.75             2 1.75
 Eagles                     
 Geese 3 2.63     11 9.65 22 19.30 36 31.58
 Gulls 2 1.75             2 1.75
 Hawks (buteos) 2 1.75 1 0.88 2 1.75 2 1.75 7 6.14
 Herons 3 2.63 2 1.75         5 4.39
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 Mourning dove 1 0.88 37 32.46 1 0.88     39 34.21
 Rock dove 2 1.75 9 7.89         11 9.65
 Shorebirds 4 3.51 33 28.95 7 6.14     44 38.60
 Sparrows 4 3.51 9 7.89 3 2.63     16 14.04
 Swallows 2 1.75 7 6.14 7 6.14     16 14.04
 Vultures         1 0.88     1 0.88
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Table 4.  Wildlife observed during remote camera surveys at 10 airports in Indiana in 2005-2006.  Data are the numbers of 
observations of new individuals, not abundances.  Coyotes and white-tailed deer highlighted.  Individuals classified in the 
Unidentified Mammal or Unidentified Animal categories were only pictures of eyes – no size was determinable. 
 
AIRPORT SPECIES SPRING SUMMER FALL WINTER TOTAL 
Anderson American Crow       6 6
 Common Raccoon 9 1 3 13 26
 Coyote       15 15
 Eastern Cottontail       1 1
 Feral/Domestic Cat       1 1
 Fox Squirrel     2 15 17
 Gray Catbird 1       1
 Red Squirrel     1   1
 Unidentified Mammal sp. 2    1 15 17
 Unidentified Squirrel sp.       1 1
 Virginia Opossum     1   1
 White-tailed Deer 4 8   27 39
Clark Co. Common Raccoon     5 1 6
 Coyote     1 7 8
 Fox Squirrel     5   5
 Great Blue Heron       1 1
 Unidentified Animal sp.      1 2 3
 Unidentified Mammal sp.     1 2 3
 White-tailed Deer 6 3 4 15 28
DeKalb Co. Common Raccoon 1   4 2 7
 Domestic Dog       1 1
 Eastern Cottontail       1 1
 Fox Squirrel       1 1
 Unidentified Mammal sp.       2 2
 Virginia Opossum       1 1
 White-tailed Deer 10 2 3 22 37
Greenwood Common Raccoon   17 42 9 68
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 Coyote       4 4
 Domestic Dog     1 2 3
 Feral/Domestic Cat       1 1
 Mallard     2   2
 Unidentified Duck sp.     6   6
 Unidentified Mammal sp.       2 2
 Unknown 2   1   3
 Woodchuck 1       1
Huntingburg Coyote       5 5
 Eastern Cottontail       3 3
 Feral/Domestic Cat       2 2
 Fox Squirrel       2 2
 Unidentified Bird 1       1
 Unidentified Mammal sp.       1 1
 Unknown 2       2
 White-tailed Deer 1 2   9 12
 Wild Turkey       1 1
Purdue American Crow   1     1
 Brown-headed Cowbird   1     1
 European Starling   1     1
 Killdeer 2       2
 Mourning Dove   9     9
 Red-tailed Hawk       1 1
 Turkey Vulture 2 4     6
 Unidentified Animal   1     1
 Unidentified Bird 3       3
 Unidentified Mammal sp.       2 2
 Unidentified Swallow sp. 1       1
 Unknown 2       2
Putnam Co. American Crow     2 2 4
 Common Raccoon 3       3
 Coyote 1   1 2 4



 

 132

 Eastern Wood-Pewee   1     1
 Indigo Bunting   1     1
 Mourning Dove     1   1
 Northern Cardinal   1     1
 Unidentified Animal sp.       2 2
 Unidentified Bird   3     3
 Unidentified Mammal sp.  1     1 2
 Unidentified Mouse sp.     1   1
 White-tailed Deer 4     19 23
Richmond American Robin       1 1
 Coyote 1 1     2
 Eastern Cottontail       2 2
 European Starling       1 1
 Feral/Domestic Cat       2 2
South Bend Common Raccoon 1   2 12 15
 Eastern Cottontail   3   6 9
 Mink     2   2
 Unidentified Animal       1 1
 Virginia Opossum       1 1
 White-tailed Deer 1   2   3
 Woodchuck   3 5   8
Warsaw Common Raccoon     2   2
 Coyote       2 2
 Eastern Cottontail       2 2
 Feral/Domestic Cat       1 1
 Unidentified Mammal sp.       1 1
TOTAL 
OBSERVATIONS  62 63 101 254 480
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Table 5.  Habitat types inside property boundaries at 10 airports in Indiana in 2005-2006.  Data represent the percentage of the total 
airport area.  See the text for a description of habitat types. 
 
HABITAT 
TYPE Anderson 

Clark 
Co. 

DeKalb 
Co. Greenwood Huntingburg Purdue

Putnam 
Co. Richmond

South 
Bend Warsaw Average

Alfalfa (ALF)        10.5   1.1 
Bare Earth/ 
Construction 
(BEC)  0.2  3.3 6.7 0.4  0.2 0.1  1.1 
Cattail Marsh 
(CM)   0.6        0.1 
Corn Field 
(CF)   16.0 17.7 25.4  4.5 31.8   9.5 
Developed 
(DEV) 6.0 9.3 3.9 12.1 5.5 8.7 5.1 1.4 7.7 6.1 6.6 
Dirt/Gravel 
Pile (DGP)   0.0 0.0  0.1 0.1 0.0   0.0 
Ephemeral 
Pool (EP)  0.1 0.0   0.1 0.4  0.1  0.1 
Fencerow 
(FR) 0.3  0.3        0.1 
Grassy 
Swamp (GS)   0.6        0.1 
Gravel Road 
(GR)  0.3   0.1 4.0  0.2 1.1  0.6 
Hayfield 
(HAY) 1.6  7.0 17.6 5.8      3.2 
Medium 
Grass (MG) 2.7 16.0   5.7 0.3 12.9  0.4 10.1 4.8 
Ornamental/ 
Shade Tree 
(OST)   0.5 0.0     0.1  0.1 
Permanent 
Water (PW) 1.2 2.3   0.3 0.0   0.2  0.4 
Runway 
System (RS) 8.1 7.2 2.8 9.0 3.8 12.9 7.1 7.0 14.5 8.4 8.1 



 

 134

Savanna 
(SAV)         0.9  0.1 
Scrub-Shrub 
(SS) 0.4 2.0 1.4 0.5   3.3 0.2 0.4 0.2 0.8 
Short Grass 
(SG) 34.8 50.6 20.8 25.5 24.0 73.4 16.8 9.3 75.5 71.6 40.2 
Sorghum 
Field (SGF)     10.2      1.0 
Soybean 
Field (SOY) 34.4  12.9 8.1 3.8  6.5 37.7   10.3 
Stone Swale 
(STS)     0.0    0.1  0.0 
Tall Grass 
(TG) 6.2 0.8  4.1 4.0 0.0 29.7  0.5 0.2 4.6 
Weedy Ditch 
(WD) 0.6 0.6 0.5 1.9  0.1 1.2 0.0 0.0  0.5 
Wheat Field 
(WF)   1.0       3.6 0.5 
Woodlot (W) 3.8 10.9 20.2  4.6  12.3    5.2 
Other (OTH)   11.6     1.7   1.3 
TOTAL 100.1 100.3 100.1 99.8 99.9 100.0 99.9 100.0 101.6 100.2 100.2
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Table 6.  Presence of wildlife attractants at 10 airports in Indiana in 2005-2006. 
 

ATTRACTANT Anderson 
Clark 
Co. 

DeKalb 
Co. Greenwood Huntingburg Purdue

Putnam 
Co. Richmond

South 
Bend Warsaw

Total 
Airports

Crop Field X  X X X  X X  X 7 
Woodlot 
Refugia X X X X X  X  X  7 
Permanent 
Standing Water   X  X X   X  4 
Ephemeral 
Standing Water  X X X X X X X X  8 
Permanent 
Open Stream X X  X       3 
Ephemeral 
Open Stream X X     X    3 
Open Refuse 
Container  X     X    2 
Open Building    X       1 
Open Culvert X X X  X X X  X X 8 
Brush Pile X  X      X  3 
Gravel Pile   X  X X X X   5 
Total 
Attractants 6 6 7 5 6 4 7 3 5 2  
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Table 7.  Fence characteristics and percentage of perimeter fenced at 10 airports in Indiana in 2005-2006.  See the text for description 
of fence types. 
 
AIRPORT Type A Type B Type C Type D Type E Type F Type G Type H Type I Type J Total 
Anderson        4.1 23.6 49.2 76.9 
Clark Co.       42.9    42.9 
DeKalb Co.       22.5    22.5 
Greenwood        98.4  0.8 99.2 
Huntingburg       1.1  0.6 42.0 43.7 
Purdue    80.9 2.3 0.1 1.6  1.4  6.7 93.0 
Putnam Co. 24.8         26.9 51.7 
Richmond       2.5  5.0  7.5 
South Bend  77.7     12.6    90.3 
Warsaw       2.4 95.7 1.9  100.0 
Total Airports 1 1 1 1 1 1 6 4 4 5  
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Table 8.  Type and number of fence openings at 10 airports in Indiana in 2005-2006.  Shaded airports were not evaluated  
because they had <25% fenced perimeter with chain-link-type fencing. 
 
AIRPORT Break Culvert Dig-hole Gap Hole Warp Other Total Total/100m
Anderson1 3     8       9 0.2 
Clark Co. 3 3 3 5       14 0.5 
DeKalb Co.                   
Greenwood       13   2   15 0.3 
Huntingburg                   
Purdue   2 16 35 59 14   126 1.3 
Putnam Co.                   
Richmond                   
South Bend     35 27   5   67 0.5 
Warsaw2 2   7 22   8 3 42 0.5 

 
1 – Two unfenced sections of >500 meters in length also occurred at this airfield.  The 3 breaks indicated include a  
 ~ 1 meter break and 2 breaks at the junction of the fence and mounds road 
2 – Two breaks of ~ 1 meter each were occurred at the junction of the terminal with the fence at this airfield
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Table 9.  Habitat characteristics within a 10-km radius of three airports in Indiana in 2005-2006.  Data represent percentage of total 
area.  See the text for a description of habitat types. 
 
HABITAT TYPE DeKalb Co. South Bend Warsaw
Barren (B) 0.6 0.4 0.3 
Forest/Woods (F/W) 17.2 16.4 11.3 
Grassland (G) 12.6 3.3 5.0 
Heavy Development (HD) 1.7 7.1 2.0 
Moderate Development (MD) 15.2 34.9 17.0 
Open Wetland (OW) 1.1 1.2 2.7 
Pasture (P) 2.2 0.6 1.8 
Pond/River (P/R) 1.5 0.9 4.2 
Recreational Field (RF) 1.1 2.7 1.1 
Row Crop (RC) 42.9 27.4 49.3 
Shrubland (S) 2.9 3.6 2.3 
Wooded Wetland (WW) 1.0 0.7 2.7 
Other (O) 0 0.8 0.2 
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Table 10 (ELECTRONIC ONLY; LOCATED ON CD).  Strike records from FAA Strike Database of 10 airports in Indiana in 2005-
2006.  Data were compiled at the Sandusky Field Office, USDA/APHIS/WS/National Wildlife Research Center. 
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Table 11.  Summary of deer and coyote observations at 10 airports in Indiana in 2005-2006.  Data represent the number of 
observations of deer and coyotes within airport boundaries. 
 
 COYOTE DEER 
AIRPORT CAMERA SPOTLIGHT OPPORT. TOTAL CAMERA SPOTLIGHT OPPORT. TOTAL 
Anderson 15   1 16 39 50 3 92 
Clark Co. 8 9 11 28 28 26   54 
DeKalb Co.     1 1 37 18 9 64 
Greenwood 4     4       0 
Huntingburg 5 2 3 10 12 4   16 
Purdue       0       0 
Putnam Co. 4   2 6 23 19 4 46 
Richmond 2   1 3   1   1 
South Bend   2 1 3 3 7 14 24 
Warsaw 2 1 1 4       0 
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Plates 1-5.  Observations of wildlife at 10 airports in Indiana.  Photographs were taken with remote cameras in 2005-2006.   
 

 
 
1.  White-tailed deer near wooded margin. 
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2.  Coyote near dig-hole under fence. 
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3.  Raccoons traveling through airport culvert. 
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4.  Flock of European starlings inside airport property. 
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5.  Great blue heron near water-filled depression inside airport property. 
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Figures 1–10. 
 

Locations of sampling points and routes for remote-camera, bird, and spotlight surveys 
conducted at 10 airports as part of the evaluation of wildlife hazards at general aviation 
airports in Indiana, 2005–2006. 
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Figure 1
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Figure 2 
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Figure 3
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Figure 4 
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Figure 5
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Figure 6
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Figure 7 
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Figure 8
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Figure 9
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Figure 10 
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Figures 11–30. 
 

Distribution of habitat patches and relative proportion of habitat types observed within 10 
airport properties as part of the evaluation of wildlife hazards at general aviation airports 
in Indiana, 2005–2006.  Color schemes for each figure were developed independently.
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Figure 11 
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Anderson Municipal
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Figure 12 

DEV = Developed 
FR = Fencerow 
HAY = Hayfield 
MG = Medium Grass 
PW = Permanent Water 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
SOY = Soybean Field 
TG = Tall Grass 
WD = Weedy Ditch 
W = Woodlot 
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Figure 13 
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Clark County
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Figure 14 

BEC = Bare Earth/Construction 
DEV = Developed 
EP = Ephemeral Pool 
GR = Gravel Road 
MG = Medium Grass 
PW = Permanent Water 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
TG = Tall Grass 
WD = Weedy Ditch 
W = Woodlot 
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Figure 15 
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DeKalb County
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Figure 16 

CM = Cattail Marsh 
CF = Corn Field 
DEV = Developed 
DGP = Dirt/Gravel Pile 
EP = Ephemeral Pool 
FR = Fencerow 
GS = Grassy Swamp 
HAY = Hayfield 
OST = Ornamental/Shade Trees 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
SOY = Soybean Field 
WD = Weedy Ditch 
WF = Wheat Field 
W = Woodlot 
OTH = Other 
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Figure 17 
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Greenwood Municipal

BEC

CF

DEV

DGP

HAY

OST

RS

SS

SG

SOY

TG

WD

Figure 18 

BEC = Bare Earth/Construction 
CF = Corn Field 
DEV = Developed 
DGP = Dirt/Gravel Pile 
HAY = Hayfield 
OST = Ornamental/Shade Trees 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
SOY = Soybean Field 
TG = Tall Grass 
WD = Weedy Ditch 



 

 166

               

Figure 19 
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Huntingburg
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Figure 20 

BEC = Bare Earth/Construction 
CF = Corn Field 
DEV = Developed 
GR = Gravel Road 
HAY = Hayfield 
MG = Medium Grass 
PW = Permanent Water 
RS = Runway System 
SG = Short Grass 
SGF = Sorghum Field 
SOY = Soybean Field 
STS = Stone Swale 
TG = Tall Grass 
W = Woodlot 
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Figure 21 
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Purdue University
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Figure 22 

BEC = Bare Earth/Construction 
DEV = Developed 
DGP = Dirt/Gravel Pile 
EP = Ephemeral Pool 
GR = Gravel Road 
MG = Medium Grass 
PW = Permanent Water 
RS = Runway System 
SG = Short Grass 
TG = Tall Grass 
WD = Weedy Ditch 
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Figure 23 
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Putnam County

CF

DEV

DGP

EP

MG

RS

SS

SG

SOY

TG

WD

W

Figure 24 

CF = Corn Field 
DEV = Developed 
DGP = Dirt/Gravel Pile 
EP = Ephemeral Pool 
MG = Medium Grass 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
SOY = Soybean Field 
TG = Tall Grass 
WD = Weedy Ditch 
W = Woodlot 
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Figure 25 
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Richmond Municipal
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Figure 26 

ALF = Alfalfa 
BEC = Bare Earth/Construction 
CF = Corn Field 
DEV = Developed 
DGP = Dirt/Gravel Pile 
GR = Gravel Road 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
SOY = Soybean Field 
WD = Weedy Ditch 
OTH = Other 
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Figure 27 
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South Bend Regional
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Figure 28 

BEC = Bare Earth/Construction 
DEV = Developed 
EP = Ephemeral Pool 
GR = Gravel Road 
MG = Medium Grass 
OST = Ornamental/Shade Trees 
PW = Permanent Water 
RS = Runway System 
SAV = Savanna 
SS = Scrub-Shrub 
SG = Short Grass 
STS = Stone Swale 
TG = Tall Grass 
WD = Weedy Ditch 
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Figure 29 
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Warsaw Municipal
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Figure 30 

DEV = Developed 
MG = Medium Grass 
RS = Runway System 
SS = Scrub-Shrub 
SG = Short Grass 
TG = Tall Grass 
WF = Wheat Field 
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Figures 31–40. 
 

Types of fencing and locations of fence openings observed at 10 airports as part of the 
evaluation of wildlife hazards at general aviation airports in Indiana, 2005–2006.  Fence 
openings were assessed only when chain-link fencing enclosed ≥25% of the airport 
perimeter. 
 
 
 
 
 

 
 
 

Fence Types 
 Type A:  305-cm (120-in) chain-link, 3 strands of barbed wire on top 
 Type B:  244-cm (96-in) chain-link, 3 strands of barbed wire on top 
 Type C:  213- to 244-cm (84- to 96-in) chain-link 
 Type D:  213-cm (84-in) chain-link, 3 strands of barbed wire on top 
 Type E:  213-cm (84-in) chain-link 
 Type F:  183- to 213-cm (72- to 84-in) chain-link, plus 30-61 cm (12-24 in) 
 buried 
 Type G:  183-cm (72-in) chain-link, 3 strands of barbed wire on top 
 Type H:  183-cm (72-in) chain-link 
 Type  I:   91- to 137-cm (36- to 54-in) chain-link 
 Type  J:   Other:  213-cm (84-in) plastic mesh (5-cm [2-in] squares); 183-cm 
 (72-in) wood-panel; 91- to 137-cm (36- to 54-in) wire mesh (15-cm [6-in] 
 squares); 5 strands barbed wire (137 cm [54 in] tall)  

 
Fence Openings 

 Break:  Opening between two segments of a fenceline (e.g., where a 
 driveway or pedestrian corridor occurred) 
 Culvert:  Open culvert underneath fence 
 Dig-hole:  Hole excavated underneath fence 
 Gap:  Open space between bottom of fence and the ground, or between doors 
 of a gate in the fenceline 
 Hole:  Missing portion of a fence created by chewing/gnawing or other 
 destructive action 
 Warp:  Open space between bottom of fence and the ground, caused by 
 warping or other physical damage to bottom of fence 
 Other:  Actions outside the fenceline that have essentially eliminated 
 effectiveness of the fence in preventing larger mammals from jumping over 
 it (e.g, by raising the height of a road or filling a ditch with gravel) 
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Figure 31 
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Figure 32 
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Figure 33 
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Figure 34 
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Figure 35 
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Figure 36 
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Figure 37 
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Figure 38 
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Figure 39 
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Figure 40 
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Figures 41–46. 
 

Distribution of habitat patches and relative proportion of habitat types mapped within a 
10-km radius of 3 airport properties as part of the evaluation of wildlife hazards at 
general aviation airports in Indiana, 2005–2006.  When the 10-km radius crossed state 
lines, only habitats in Indiana were mapped.
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Figure 41 
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DeKalb County
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AG = Agriculture 
B = Barren 
F/W = Forest/Woods 
G = Grassland 
HD = Heavy Development 
MD = Moderate Development 
OW = Open Wetland 
P = Pasture 
P/R = Pond/River 
RF = Recreational Field 
S = Shrubland 
WW = Wooded Wetland 

Figure 42 
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Figure 43 
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South Bend Regional
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Figure 44 

AG = Agriculture 
B = Barren 
F/W = Forest/Woods 
G = Grassland 
HD = Heavy Development 
MD = Moderate Development 
OW = Open Wetland 
P = Pasture 
P/R = Pond/River 
RF = Recreational Field 
S = Shrubland 
WW = Wooded Wetland 
O = Other 
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Figure 45 
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Warsaw Municipal
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AG = Agriculture 
B = Barren 
F/W = Forest/Woods 
G = Grassland 
HD = Heavy Development 
MD = Moderate Development 
OW = Open Wetland 
P = Pasture 
P/R = Pond/River 
RF = Recreational Field 
S = Shrubland 
WW = Wooded Wetland 
O = Other 

Figure 46 
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APPENDIX 
(For each question, the number of responses for each option is given in bold and italics) 

 
 
 

 
 

Dear Aircraft Operator, 
 
Purdue University is conducting an evaluation of hazards posed by wildlife at general aviation 
airports in Indiana.  As part of our research we are contacting aircraft operators to request their 
participation in a short survey of their experiences at Indiana airports in general, and at 10 
airports specifically:  Anderson Municipal, Auburn-DeKalb County, Clark County, Greencastle-
Putnam County, Huntingburg, Greenwood Municipal, Purdue University, Richmond Municipal, 
South Bend Regional, and Warsaw Municipal.  The main objectives of our survey are to gather 
information about 1) types of wildlife that aircraft operators most commonly observe at the 
airports, 2) occurrence of aircraft-operation problems caused by presence of wildlife in air 
operations areas, and 3) opinions of operators regarding the significance of hazards posed by 
various types of wildlife.  Additionally, we ask questions that will help us group survey results 
by airport, type of aircraft, and general flight activity (e.g., peak vs. non-peak flying seasons). 
 
We would greatly appreciate your participation in this important research project, as the 
information we gather may be used to develop specific management recommendations for 
improving hazardous conditions caused by the presence of wildlife at airports where you operate.  
After all, you are the operator, so your insights regarding this problem are of greatest 
significance! 
 
The survey is 4 pages in length, including an optional section for respondents to provide 
comments, details, or clarifications for all answers provided.  Please follow instructions 
presented throughout this document and mail your completed survey to us in the pre-addressed, 
stamped envelope included in this packet.  We anticipate that the survey will take approximately 
15 minutes to complete.  Your participation is voluntary and all responses will be 
anonymous.  If possible, please return your completed survey by January 1, 2006. 
 
Thank you for contributing to our assessment of wildlife hazards at Indiana airports. 
 
Sincerely, 
 
 
 
Travis L. DeVault 
Postdoctoral Research Associate 
 
 
Jacob E. Kubel 
Research Technician     
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1.  For how many years have you operated aircraft, regardless of airport/location? (please circle 
one) 

 
a.  <1 year  1 
b.  1–5 years  10 
c.  6–10 years  9 
d.  11–20 years  14 
e.  >20 years  41 

 
2.  For this question, we ask for information about the 10 focal airports listed in the table.  Please 

mark all boxes that apply for each part of the question (you may provide information for 
as many/few airports as you wish).  (not tallied—for investigator use only to determine data 
biases) 
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For how many years have you <1 year
operated aircraft at these 1-5 years
airports? 6-10 years

>10 years
What types of aircraft do you Piston Single
operate at these airports Piston Multi
(please check all that apply)? Turbine Single

Turbine Multi
Jet
Helicopter
Other

Based on your recent flight Spring (Apr-Jun)
activity, what do you consider Summer (Jul-Sep)
to be your peak flying season(s) Fall (Oct-Dec)
at these airports? Winter (Jan-Mar)
On average, how many days <1 day
per week did you operate 1 day
aircraft at these airports during 2-3 days
your peak flying season(s) this 4-5 days
past year? >5 days
On average, approximately how <1 day
many days per month did you 1 day
operate aircraft at these airports 2-7 days
during your non-peak flying 8-14 days
season(s) this past year? >14 days
On a typical day that you operate 1 time each day
aircraft during your peak flying 2 times each day
season(s), how many times do 3-4 times each day
you land and/or take off at these 5-10 times each day
airports? >10 times each day
On a typical day that you operate 1 time each day
aircraft during your non-peak 2 times each day
flying season(s), how many times 3-4 times each day
do you land and/or take off at 5-10 times each day
these airports? >10 times each day  

3.  Which of the 10 focal airports listed in the previous table do you use most often (which is 
your primary airport)? (please circle one) 

 
1)  Anderson Municipal  3 
2)  Auburn-DeKalb County  13 
3)  Clark County  14 
4)  Greencastle-Putnam County  9 
5)  Huntingburg  7 
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6)  Greenwood Municipal  2 
7)  Purdue University  18 
8)  Richmond Municipal  5 
9)  South Bend Regional  4 
10) Warsaw Municipal  9 
 

4.  For this question, we ask for information about 11 groups of wildlife that occasionally cause 
problems at airports.  We ask that you answer the question only with regard to your 
primary airport (as answered in Question 3 above).  Please mark all boxes that apply.   
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During your peak flying season(s), >75% of flights 12 1 5 0 0 3 10 15 1 1 0
approximately how often do you 51-75% of flights 11 0 8 0 0 4 4 6 0 2 0
observe the following types of 25-50% of flights 12 2 15 7 5 7 22 15 6 5 1
wildlife in air operations areas <25% of flights 31 12 40 29 13 23 26 27 43 31 23
of your primary airport? Never 9 36 9 23 34 17 6 3 18 25 31

Do not know 1 8 2 5 9 10 5 5 3 8 8
During your non-peak flying >75% of flights 9 0 3 0 0 2 8 14 1 1 0
seasons, approximately how often 51-75% of flights 12 1 10 0 0 5 3 3 1 4 1
do you observe the following types 25-50% of flights 6 2 9 6 3 5 22 9 6 4 1
of wildlife in air operations areas <25% of flights 34 11 41 29 17 24 25 31 39 28 22
of your primary airport? Never 10 35 9 21 30 18 7 5 17 24 28

Do not know 2 8 2 5 9 8 4 5 6 8 9
In your opinion, how hazardous are Very hazardous 15 5 21 5 3 3 8 3 23 11 1
these types of wildlife in the air Hazardous 9 6 15 14 8 9 19 10 16 12 10
operations areas of your primary Somewhat hazardous 30 12 34 24 19 25 32 26 18 21 16
airport with respect to human Not hazardous 18 27 9 20 24 27 13 33 14 23 27
safety? No opinion 3 13 1 3 9 2 2 2 3 4 9
In your opinion, how hazardous are Very hazardous 17 5 19 5 3 3 13 3 24 15 2
these types of wildlife in the air Hazardous 21 9 19 16 8 10 15 10 15 16 12
operations areas of your primary Somewhat hazardous 19 13 28 19 21 24 25 31 18 17 18
airport with respect to economic Not hazardous 12 23 6 17 18 22 13 22 8 14 21
costs of a wildlife collision? No opinion 7 13 7 9 13 7 7 8 8 8 11  
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5.  During the past year at your primary airport, how many times have you had to alter flight, 
landing, or take-off plans because of wildlife occurring within the air operations areas? 
(please circle one)   

 
a.  0 times  26 
b.  1–2 times  33 
c.  3–5 times  18 
d.  6–10 times  5 
e.   >10 times  2 

 
6.  During the past year at your primary airport, how many times have you been involved in a 

collision with wildlife while operating aircraft within the air operations areas? (please 
circle one)   

 
a.  0 times  63 
b.  1–2 times  20 
c.  3–5 times  1 
d.  6–10 times  0 
e.   >10 times  0 

 
7.  In terms of wildlife presence and abundance that you have observed, to what degree do you 

believe improvement of current conditions or management strategies at your primary 
airport is needed to ensure that wildlife are not a hazard in air operations areas? (please 
circle one)   

 
a.  Needs much improvement  18 
b.  Needs a little improvement  31 
c.  Does not need improvement  28 
d.  No opinion  6 

  
8.  Over the entire course of your experience as a pilot, how many times have you been involved 

in a collision with wildlife while operating aircraft, regardless of airport/location? (please 
circle one) 
 
a.  0 times  19 
b.  1–2 times  31 
c.  3–5 times  19 
d.  6–10 times  9 
e.   >10 times  6 

 
9.  With which of the following types of wildlife have you been involved in an aircraft-wildlife 

collision, regardless of airport/location?  Please circle all that apply.  If you have 
information that is more specific than implied by one of the choices below, please explain 
via choice “n. Other than above.” 

 
a.  Not applicable  17     h.  Starling, blackbird, or grackle  36  
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b.  Large soaring bird (eagle, hawk, or vulture) 12 i.   Dove/Pigeon  8 
c.  Heron or Crane  1     j.   Other bird _______________  11 
d.  Goose  17      k.  Deer  6 
e.  Duck  9           l.   Coyote  3 
f.   Gull  9       m. Other mammal 
_______________  4 
g.  Crow/Raven  10     n.  Other than above 
_______________  2 

10.  Have your experiences with wildlife ever caused you to permanently cease operating aircraft 
at a particular airport?  If answering “yes,” you may specify the airport and state if you wish. 

 
 a.  Yes ______________________________  3 
 b.  No  81 
 
11.  With respect to potential for aircraft-wildlife collisions, how hazardous are wildlife 

populations (in general) at all airports in Indiana? (please circle one)   
 

a.  Very hazardous (a significant problem requiring immediate action)  8 
b.  Hazardous (a problem, but immediate action is not necessary)  28 
c.  Somewhat hazardous (a problem only under rare circumstances, and action probably is 

not necessary)  36 
d.  Not hazardous (not a problem, no action necessary).  9 

 
12.  Wildlife problems often are addressed in different ways.  In general, to what degree do you 

support the following actions that potentially may prevent or reduce frequency of aircraft-
wildlife collisions? (please circle one choice for each action) 

 
A.  Construction of exclosures (fencing)  C.  Modification/elimination of wildlife 

habitat 
a.  Strongly support  35          a.  Strongly support  16 
b.  Support  21           b.  Support  19 
c.  Neither support nor oppose  15        c.  Neither support nor oppose  16 
d.  Oppose  8            d.  Oppose  22 
e.  Strongly oppose  2          e.  Strongly oppose  9 
 

B.  Use of wildlife deterrents (e.g., loud  D.  Direct removal of wildlife (involves 
lethal sounds, flashing lights, owl decoys)          means) 
a.  Strongly support  23          a.  Strongly support  15 
b.  Support  32           b.  Support  16 
c.  Neither support nor oppose  19        c.  Neither support nor oppose  14 
d.  Oppose  7           d.  Oppose  26 
e.  Strongly oppose  1          e.  Strongly oppose  11 

 
13.  Please feel free to add comments or clarifications to answers you provided for any of the 

previous questions: 
Thank you for your participation! 
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