53 research outputs found

    An Analytic Model for Estimating the First Contact Resistance Needed to Avoid Damaging ESD During Spacecraft Docking in GEO

    Get PDF
    NASAs Gateway program will involve spacecraft (s/c) docking in the outer radiation belt in order to transfer Gateway elements between s/c for transport to lunar orbit. The charging of these s/c to different potentials prior to docking raises the possibility of a damaging electrostatic discharge (ESD) at the time of first contact between the s/c. A proposed mitigation strategy is for first contact to occur prior to docking through a resistor with resistance R that would lower the potential difference at an optimal rate to a sufficiently low value to prevent ESD damage. The coupling of s/c by a resistor can be modeled by SPIS, but for realistic two s/c models SPIS can take hours to simulate the evolution of the s/c surface charges and potentials to an equilibrium state. Our objective is to develop a simpler model of s/c resistive coupling that runs orders of magnitude faster while providing useful first design estimates of the time variation of the s/c potentials, current through the resistor, and how these vary with R and s/c configuration This configuration is defined by the relative separation and orientation of the s/c, and their solar illumination. The configuration and geometry of the s/c determine their capacitive coupling. The s/c capacitances are computed using Nascap-2K. This poster presents the first version of such a model, and initial tests

    Spacecraft Charging during Docking Operations in the Outer Radiation Belt

    Get PDF
    Spacecraft charging can occur when a spacecraft vehicle is subject to space plasma environments and varying sunlit conditions. The trajectory of the spacecraft will determine the specific impinging environment while the spacecraft geometry and material properties determine the susceptibility to various charging issues. In general, spacecraft charging is separated into two categories, surface charging (~100keV)

    An Analytic Model for Estimating the First Contact Resistance Needed to Avoid Damaging ESD During Spacecraft Docking in GEO

    Get PDF
    NASAs Gateway program is to involve spacecraft (s/c) docking in the outer radiation belt in order to transfer Gateway elements between s/c for transport to lunar orbit. The charging of these s/c to different potentials prior to docking raises the possibility of a damaging electrostatic discharge (ESD) at the time of first contact between the s/c. A proposed mitigation strategy is for first contact to occur prior to docking through a resistor with resistance R that would lower the potential difference at an optimal rate to a sufficiently low value to prevent a damaging ESD. The coupling of s/c by a resistor can be modeled by SPIS (Spacecraft Plasma Interaction System), but for realistic two s/c models SPIS can take hours to simulate the evolution of the s/c surface charges and potentials to an equilibrium state. Our objective is to develop a simpler model of s/c resistive coupling that runs orders of magnitude faster while providing useful first design estimates of the time variation of the s/c potentials, current through the resistor, and how these vary with R and s/c configuration. This configuration is defined by the relative separation and orientation of the s/c, and their solar illumination. The configuration and geometry of the s/c determine their capacitive coupling. The s/c capacitances are computed using Nascap-2K. This abstract and the associated poster describe the first version of such a model, and initial tests

    Electrostatic Solar Sail: A Propellantless Propulsion Concept for an Interstellar Probe Mission

    Get PDF
    The propulsion of an electrostatic solar sail (E Sail) is obtained by extracting momentum from the solar wind through electrostatic repulsion of the positively charged solar wind ions (see Figure 1). The positively charged solar wind protons are deflected by the electric field created around the tethers.This electric field grows in diameter as the spacecraft moves away from the Sun, therefore the E Sail effective area grows. The growth of the E-Sail effective area allows the propulsive force to decrease as 1/r up to distances of 20 AU as it moves away from the Sun, unlike solar sail propulsion whose thrust decreases as 1/r 2 but only to distances of 5AU. This propulsive force is created without using propellant and, therefore, E-sail avoids both the mass and complexity of chemical rockets (that require large amounts of propellant, propellant storage tanks, plumbing, valves, and insulation)

    Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination

    Get PDF
    BACKGROUND: HIV-1 recombination between different subtypes has a major impact on the global epidemic. The generation of these intersubtype recombinants follows a defined set of events starting with dual infection of a host cell, heterodiploid virus production, strand transfers during reverse transcription, and then selection. In this study, recombination frequencies were measured in the C1-C4 regions of the envelope gene in the presence (using a multiple cycle infection system) and absence (in vitro reverse transcription and single cycle infection systems) of selection for replication-competent virus. Ugandan subtypes A and D HIV-1 env sequences (115-A, 120-A, 89-D, 122-D, 126-D) were employed in all three assay systems. These subtypes co-circulate in East Africa and frequently recombine in this human population. RESULTS: Increased sequence identity between viruses or RNA templates resulted in increased recombination frequencies, with the exception of the 115-A virus or RNA template. Analyses of the recombination breakpoints and mechanistic studies revealed that the presence of a recombination hotspot in the C3/V4 env region, unique to 115-A as donor RNA, could account for the higher recombination frequencies with the 115-A virus/template. Single-cycle infections supported proportionally less recombination than the in vitro reverse transcription assay but both systems still had significantly higher recombination frequencies than observed in the multiple-cycle virus replication system. In the multiple cycle assay, increased replicative fitness of one HIV-1 over the other in a dual infection dramatically decreased recombination frequencies. CONCLUSION: Sequence variation at specific sites between HIV-1 isolates can introduce unique recombination hotspots, which increase recombination frequencies and skew the general observation that decreased HIV-1 sequence identity reduces recombination rates. These findings also suggest that the majority of intra- or intersubtype A/D HIV-1 recombinants, generated with each round of infection, are not replication-competent and do not survive in the multiple-cycle system. Ability of one HIV-1 isolate to outgrow the other leads to reduced co-infections, heterozygous virus production, and recombination frequencies

    Zephyr: The Seventeenth Issue

    Get PDF
    This is the seventeenth issue of Zephyr, the University of New England\u27s journal of creative expression. Since 2000, Zephyr has published original drawings, paintings, photography, prose, and verse created by current and former members of the University community. Zephyr\u27s Editorial Board is made up exclusively of matriculating students.https://dune.une.edu/zephyr/1260/thumbnail.jp

    Identifying rare variants from exome scans: the GAW17 experience

    Get PDF
    Genetic Analysis Workshop 17 (GAW17) provided a platform for evaluating existing statistical genetic methods and for developing novel methods to analyze rare variants that modulate complex traits. In this article, we present an overview of the 1000 Genomes Project exome data and simulated phenotype data that were distributed to GAW17 participants for analyses, the different issues addressed by the participants, and the process of preparation of manuscripts resulting from the discussions during the workshop

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
    corecore