390 research outputs found

    The isotopic and chemical evolution of planets: Mars as a missing link

    Get PDF
    The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites

    Models of Hawaiian volcano growth and plume structure: Implications of results from the Hawaii Scientific Drilling Project

    Get PDF
    The shapes of typical Hawaiian volcanoes are simply parameterized, and a relationship is derived for the dependence of lava accumulation rates on volcano volume and volumetric growth rate. The dependence of lava accumulation rate on time is derived by estimating the eruption rate of a volcano as it traverses the Hawaiian plume, with the eruption rate determined from a specified radial dependence of magma generation in the plume and assuming that a volcano captures melt from a circular area centered on the volcano summit. The timescale of volcano growth is t = 2 R/ν_plate where R is the radius of the melting zone of the (circular) plume and νplate is the velocity of the Pacific plate. The growth progress of a volcano can be described by a dimensionless time t′ = tν_plate/2R, where t′ = 0 is chosen to be the start of volcano growth and t′ = 1 approximates the end of “shield” growth. Using a melt generation rate for the whole plume of 0.2 km^(3)/yr, a plume diameter of 50 km, and a plate velocity of 10 cm/yr, we calculate that the lifetime of a typical volcano is 1000 kyr. For a volcano that traverses the axis of the plume, the “standard” dimensions are a volume of 57,000 km^3, a summit thickness of 18 km, a summit elevation of 3.6 km, and a basal radius of 60 km. The volcano first breaches the sea surface at t′ ≈ 0.22 when it has attained only 5% of its eventual volume; 80% of the volume accumulates between t′ = 0.3 and t′ = 0.7. Typical lava accumulation rates start out over 50 m/kyr in the earliest stages of growth from the seafloor, and level out at ∼35 m/kyr from t′ ≈ 0.05 until t′ = 0.4. From t′ = 0.4 to t′ = 0.9, the submarine lava accumulation rates decrease almost linearly from 35 m/kyr to ∼0; subaerial accumulation rates are about 30% lower. The lava accumulation rate is a good indicator of volcano age. A volcano that passes over the plume at a distance 0.4R off to the side of the plume axis is predicted to have a volume of about 60% of the standard volcano, a lifetime about 8% shorter, and lava accumulation rates about 15–20% smaller. The depth-age data for Mauna Kea lavas cored by the Hawaii Scientific Drilling Project are a good fit to the model parameters used, given that Mauna Kea appears to have crossed the plume about 15–20 km off-axis. The lifetime of Mauna Kea is estimated to be 920 kyr. Mauna Loa is predicted to be at a stage corresponding to t′ ≈ 0.8, Kilauea is at t′ ≈ 0.6, and Loihi is at t′ ≈0.16. The model also allows the subsurface structure of the volcanoes (the interfaces between lavas from different volcanoes) to be modeled. Radial geochemical structure in the plume may be blurred in the lavas because the volcanoes capture magma from a sizeable cross-sectional area of the plume; this inference is qualitatively born out by available isotopic data. The model predicts that new Hawaiian volcanoes are typically initiated on the seafloor near the base of the next older volcano but generally off the older volcano's flank

    A Tone-Aided/Dual Vestigial Sideband (TA/DVSB) system for mobile satellite channels

    Get PDF
    Tone-aided modulation is one way of combatting the effects of multipath fading and Doppler frequency shifts. A new tone-aided modulation format for M-ary phase-shift keyed signals (MPSK) is discussed. A spectral null for the placement of the tone is created in the center of the MPSK signal by translating the upper sideband upwards in frequency by the same amount. The key element of the system is the algorithm for recombining the data sidebands in the receiver, a function that is performed by a specialized phase-locked loop (PLL). The system structure is discussed and simulation results showing the PLL acquisition performance are presented

    Inferences about magma sources and mantle structure from variations of ^(143)Nd/^(144)Nd

    Get PDF
    Continental flood basalts and mid-ocean ridge (MOR) tholeiitic basalts have distinctly different ^(143)Nd/^(144)Nd which may permit a priori distinction between "continental" and "oceanic" igneous rocks. Initial ^(143)Nd/^(144)Nd of continental igneous rocks through time fall on a Sm/Nd evolution curve with chondritic REE abundance ratio. These observations indicate that many continental igneous rocks are derived from a reservoir with chondritic REE pattern which may represent primary material remaining since the formation of the earth. Oceanic igneous rocks are derived from a different ancient reservoir which has Sm/Nd higher than chondritic. Initial ^(143)Nd/^(144)Nd and ^(87)Sr/^(86)Sr in young basalts from both oceans and continents show a strong correlation suggesting that Sm-Nd and Rb-Sr fractionation events in the mantle may be correlative and caused by the same process. From this correlation Rb/Sr for the earth is inferred to be 0.029

    The sources of island arcs as indicated by Nd and Sr isotopic studies

    Get PDF
    Island arc lavas from New Britain and the Marianas have ^(143)Nd/^(144)Nd similar to other oceanic basalts and distinctly different from continental flood basalts and thus appear to be derived from a high Sm/Nd, light-REE-depleted reservoir. Consideration of both Nd and Sr isotopes suggests seawater involvement in the generation of some island arc lavas and thus indicates that they may be derived from altered subducted oceanic crust. Other island arc lavas show no evidence of seawater involvement and may be derived from mantle reservoirs with affinities to the sources of ocean island basalts. Andesite and rhyolite from an Andean volcano reflect assimilation of old continental crust. Nd and Sr in basaltic and ultrapotassic continental rocks indicate that some mafic magmas in continental regions may be derived from old low-Sm/Nd reservoirs or are heavily contaminated with old continental crustal material. Fish debris from the ocean floor provides an estimate of ^(143)Nd/^(144)Nd in seawater and indicates that light-REE in the marine environment are derived mainly from continents. Basalts erupted above sea level in oceanic and continental areas are isotopically distinct from those erupted on the ocean floor, suggesting a relationship between parental reservoirs and hydrostatic head

    Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks

    Get PDF
    Mantle-derived magmas at convergent plate boundaries provide unique insights into the nature of materials subducted to and recycled from depths. Here we present a study of Os–Sr–Mg isotopes on the Oligocene–Miocene ultrapotassic rocks aimed at better understanding sediment subduction and recycling beneath southern Tibet. New isotopic data confirm that ultrapotassic rocks in southern Tibet are of mantle origin, but underwent crustal contamination as evidenced by the variably high 187Os/188Os that obviously deviates from normal mantle reservoir. Still some samples with mantle-like 187Os/188Os exhibit δ26Mg significantly lower than mantle and crustal lithologies, suggesting that the isotopically light Mg may not result from crustal contamination but retain specific fingerprint of carbonate-related metasomatism in mantle sources. Mantle carbonatite metasomatism is manifested by the inverse δ26Mg–87Sr/86Sr correlations, as well as the depletion of high field strength elements relative to rare earth elements and the enrichment of CaO in ultrapotassic rocks. The positive co-variations between δ26Mg and Hf/Sm defined by those low-187Os/188Os ultrapotassic rocks provide evidence for the potential of recycled dolomites to modify mantle Mg isotopic composition. The correlated spatial variations of δ26Mg and Hf/Sm are interpreted to reflect carbonatitic metasomatism associated with the northward subduction of the Neo-Tethyan oceanic slab and its profound influence on postcollisional ultrapotassic magmatism

    Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France

    Get PDF
    This paper determines the weathering and atmospheric contributions of Ca in surface water from a small spruce forested silicate catchment (N–E France) receiving acid atmospheric inputs. The bedrock is a granite with K-feldspar and albite as dominant phases. The calcium content in plagioclase is low and the Ca/Na ratio in surface water is high, reflecting other sources of calcium from those expected from the weathering of major mineral phases. The biotite content is low. Only traces of apatite were detected while no calcite was found in spite of a major hydrothermal event having affected the granite. The strontium isotopic ratio 87Sr/86Sr and Sr content was used as a tracer of weathering and was determined in minerals and bulk bedrock, open field precipitation, throughfall, soil solution, spring and stream water. The Sr isotopic ratio of the reacting weathering end-member was predicted by simulating the alteration of the granite minerals by incorporating strontium into the water–rock interaction kinetic code KINDIS. In the early stages of water–rock interaction, K-feldspar and biotite strongly influence the isotopic composition of the weathering solution whereas, the Na-rich plagioclase appears to be the main long-term reactive weathering end-member. Approximately 50% of dissolved Sr in streamwater are atmospherically derived. The 87Sr/86Sr ratios of exchangeable Sr in the fine fraction at 1-m depth from a soil profile indicate that the amount of exchangeable Sr seems essentially controlled by atmospheric inputs. The exception is the deep saprolite where weathering processes could supply the Sr (and Ca). Na-Plagioclase weathering obviously control the chemistry and the isotopic composition of surface waters. The weathering of trace mineral plays a secondary role, the exception is for apatite when plagioclase is absent. Our hydrochemical, mineralogical and isotopic investigations show that a major part of the strong Ca losses detected in catchment hydrochemical budgets that result from the neutralization of acid precipitation has an atmospheric origin. Consequently, in the long term, in such areas, the availability of such an exchangeable base cation might be strongly limited and surface waters consequently acidified
    • …
    corecore