129 research outputs found

    The Role of Information Sharing to Improve Case Management in Child Welfare

    Get PDF
    Congress enacted the Adoption and Safe Families Act to improve outcomes concerning the permanency, safety, and wellbeing of children in the care of child welfare agencies. However, achieving its goals for the more than 700,000 children who spend time in the custody of child protective services (CPS) every year in the United States is made more difficult by their poorer health compared to the general population.1 Common health concerns among children in CPS custody include developmental delay (e.g., intellectual delay or disability, gross or fine motor delay, speech delay), infections diseases, mental and behavioral health concerns, and medical concerns. Higher levels of healthcare compared to other children who live in poverty are often required.2 While health concerns may have been identified before children entered CPS custody, connections to healthcare providers and services are disrupted when children are removed from their families of origin and placed in out-of-home care. Efforts to collect a child’s complete medical history upon entering care may be difficult, and incomplete histories negatively impact health and disease management. Moreover, disruptions in healthcare can continue even after children enter CPS custody and out-of-home care—for example, when children change placements or caseworkers—leading to additional challenges managing children’s health needs and increasing healthcare use.

    A new method for operating a continuous-flow diffusion chamber to investigate immersion freezing: assessment and performance study

    Get PDF
    Glaciation in mixed-phase clouds predominantly occurs through the immersion-freezing mode where ice-nucleating particles (INPs) immersed within supercooled droplets induce the nucleation of ice. Model representations of this process currently are a large source of uncertainty in simulating cloud radiative properties, so to constrain these estimates, continuous-flow diffusion chamber (CFDC)-style INP devices are commonly used to assess the immersion-freezing efficiencies of INPs. This study explored a new approach to operating such an ice chamber that provides maximum activation of particles without droplet breakthrough and correction factor ambiguity to obtain high-quality INP measurements in a manner that previously had not been demonstrated to be possible. The conditioning section of the chamber was maintained at -20 degrees C and water relative humidity (RHO conditions of 113 % to maximize the droplet activation, and the droplets were supercooled with an independently temperature-controlled nucleation section at a steady cooling rate (0.5 degrees C min(-1)) to induce the freezing of droplets and evaporation of unfrozen droplets. The performance of the modified compact ice chamber (MCIC) was evaluated using four INP species: K-feldspar, illite-NX, Argentinian soil dust, and airborne soil dusts from an arable region that had shown ice nucleation over a wide span of supercooled temperatures. Dry-dispersed and size-selected K-feldspar particles were generated in the laboratory. Illite-NX and soil dust particles were sampled during the second phase of the Fifth International Ice Nucleation Workshop (FIN-02) campaign, and airborne soil dust particles were sampled from an ambient aerosol inlet. The measured ice nucleation efficiencies of model aerosols that had a surface active site density (n(s)) metric were higher but mostly agreed within 1 order of magnitude compared to results reported in the literature

    Observation of playa salts as nuclei in orographic wave clouds

    Get PDF
    During the Ice in Clouds Experiment-Layer Clouds (ICE-L), dry lakebed, or playa, salts from the Great Basin region of the United States were observed as cloud nuclei in orographic wave clouds over Wyoming. Using a counterflow virtual impactor in series with a single-particle mass spectrometer, sodium-potassium-magnesium-calcium-chloride salts were identified as residues of cloud droplets. Importantly, these salts produced similar mass spectral signatures to playa salts with elevated cloud condensation nuclei (CCN) efficiencies close to sea salt. Using a suite of chemical characterization instrumentation, the playa salts were observed to be internally mixed with oxidized organics, presumably produced by cloud processing, as well as carbonate. These salt particles were enriched as residues of large droplets (>19 μm) compared to smaller droplets (>7 μm). In addition, a small fraction of silicate-containing playa salts were hypothesized to be important in the observed heterogeneous ice nucleation processes. While the high CCN activity of sea salt has been demonstrated to play an important role in cloud formation in marine environments, this study provides direct evidence of the importance of playa salts in cloud formation in continental North America has not been shown previously. Studies are needed to model and quantify the impact of playas on climate globally, particularly because of the abundance of playas and expected increases in the frequency and intensity of dust storms in the future due to climate and land use changes

    Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds

    Get PDF
    Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L^(−1). In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60 nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.ISSN:1680-7375ISSN:1680-736

    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated

    Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results

    Get PDF
    Combining field and laboratory results, we present biomass smoke physical properties. We report sub-0.56 µm diameter (Dp) particle sizing (fast mobility particle sizer, FMPS) plus light absorption and scattering at 870nm (photoacoustic extinctiometer). For Dp\u3c200 \u3enm, the FMPS characterized sizing within ±20% compared to standards. As compared to the traditional scanning mobility particle sizer, the FMPS responded most accurately to single-mode polydispersions with mean Dp\u3c200 \u3enm, which characterized the smoke sampled here. Smoke was measured from laboratory fresh emissions (seconds to hours old), the High Park Fire (hours to\u3c1 \u3eday), and from regional biomass burning (several days). During a High Park Fire episode, light extinction rapidly reached a maximum of σep = 569 ± 21Mm-1 (10 min) with aerosol single scattering albedo peaking at ω= 0.955 ± 0.004. Concurrently, number concentration and size peaked with maximum Dp = 126nm and a unimodal distribution with σg = 1.5. Long-range transported smoke was substantially diluted (Ntot factor of 7 lower) and shifted larger (maximum Dp = 143) and wider (σg = 2.2). We compared ambient data to laboratory burns with representative western U.S. forest fuels (coniferous species Ponderosa pine and Alaska black spruce). Smoldering pine produced an aerosol dominated by larger, more strongly light scattering particles (Dp\u3e100 nm), while flaming combustion produced very high number concentrations of smaller (Dp ~ 50 nm) absorbing particles. Due to smoldering and particle growth processes, Dp approached 100nm within 3 h after emission. Increased particle cross-sectional area and Mie scattering efficiency shifted the relative importance of light absorption (flaming maximum) and light scattering (smoldering maximum), increasing ω over time. Measurements showed a consistent picture of smoke properties from emission to aging

    Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies

    Get PDF
    Single scattering albedo (ω) of fresh biomass burning (BB) aerosols produced from 92 controlled laboratory combustion experiments of 20 different woods and grasses was analyzed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω. A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field observations from two wildfires. The parameterization suggests that MCEFI explains 60% of the variability in ω, while the 40% unexplained variability could be accounted for by other parameters such as fuel type. Our parameterization provides a promising framework that requires further validation and is amenable for refinements to predict ω with greater confidence, which is critical for estimating the radiative forcing of BB aerosols

    Annual cycle observations of aerosols capable of ice formation in central Arctic clouds

    Get PDF
    The Arctic is warming faster than anywhere else on Earth, prompting glacial melt, permafrost thaw, and sea ice decline. These severe consequences induce feedbacks that contribute to amplified warming, affecting weather and climate globally. Aerosols and clouds play a critical role in regulating radiation reaching the Arctic surface. However, the magnitude of their effects is not adequately quantified, especially in the central Arctic where they impact the energy balance over the sea ice. Specifically, aerosols called ice nucleating particles (INPs) remain understudied yet are necessary for cloud ice production and subsequent changes in cloud lifetime, radiative effects, and precipitation. Here, we report observations of INPs in the central Arctic over a full year, spanning the entire sea ice growth and decline cycle. Further, these observations are size-resolved, affording valuable information on INP sources. Our results reveal a strong seasonality of INPs, with lower concentrations in the winter and spring controlled by transport from lower latitudes, to enhanced concentrations of INPs during the summer melt, likely from marine biological production in local open waters. This comprehensive characterization of INPs will ultimately help inform cloud parameterizations in models of all scales
    corecore