210 research outputs found
Broad and narrow personality traits as markers of one-time and repeated suicide attempts: A population-based study
<p>Abstract</p> <p>Background</p> <p>Studying personality traits with the potential to differentiate between individuals engaging in suicide attempts of different degrees of severity could help us to understand the processes underlying the link of personality and nonfatal suicidal behaviours and to identify at-risk groups. One approach may be to examine whether narrow, i.e., lower-order personality traits may be more useful than their underlying, broad personality trait dimensions.</p> <p>Methods</p> <p>We investigated qualitative and quantitative differences in broad and narrow personality traits between one-time and repeated suicide attempters in a longitudinal, population-based sample of young French Canadian adults using two multivariate regression models.</p> <p>Results</p> <p>One broad (Compulsivity: OR = 2.0; 95% CI 1.2–3.5) and one narrow personality trait (anxiousness: OR = 1.1; 95% CI 1.01–1.1) differentiated between individuals with histories of repeated and one-time suicide attempts. Affective instability [(OR = 1.1; 95% CI 1.04–1.1)] and anxiousness [(OR = .92; 95% CI .88–.95)], on the other hand, differentiated between nonattempters and one-time suicide attempters.</p> <p>Conclusion</p> <p>Emotional and cognitive dysregulation and associated behavioural manifestations may be associated with suicide attempts of different severity. While findings associated with narrow traits may be easier to interpret and link to existing sociobiological theories, larger effect sizes associated with broad traits such as Compulsivity may be better suited to objectives with a more clinical focus.</p
Acatalasemic mice are mildly susceptible to adriamycin nephropathy and exhibit increased albuminuria and glomerulosclerosis
Background: Catalase is an important antioxidant enzyme that regulates the level of intracellular hydrogen peroxide and hydroxyl radicals. The effects of catalase deficiency on albuminuria and progressive glomerulosclerosis have not yet been fully elucidated. The adriamycin (ADR) nephropathy model is considered to be an experimental model of focal segmental glomerulosclerosis. A functional catalase deficiency was hypothesized to exacerbate albuminuria and the progression of glomerulosclerosis in this model.
Methods: ADR was intravenously administered to both homozygous acatalasemic mutant mice (C3H/AnLCs(b)Cs(b)) and control wild-type mice (C3H/AnLCs(a)Cs(a)). The functional and morphological alterations of the kidneys, including albuminuria, renal function, podocytic, glomerular and tubulointerstitial injuries, and the activities of catalase were then compared between the two groups up to 8 weeks after disease induction. Moreover, the presence of a mutation of the toll-like receptor 4 (tlr4) gene, which was previously reported in the C3H/HeJ strain, was investigated in both groups.
Results: The ADR-treated mice developed significant albuminuria and glomerulosclerosis, and the degree of these conditions in the ADR-treated acatalasemic mice was higher than that in the wild-type mice. ADR induced progressive renal fibrosis, renal atrophy and lipid peroxide accumulation only in the acatalasemic mice. In addition, the level of catalase activity was significantly lower in the kidneys of the acatalasemic mice than in the wild-type mice during the experimental period. The catalase activity increased after ADR injection in wild-type mice, but the acatalasemic mice did not have the ability to increase their catalase activity under oxidative stress. The C3H/AnL strain was found to be negative for the tlr4 gene mutation.
Conclusions: These data indicate that catalase deficiency plays an important role in the progression of renal injury in the ADR nephropathy model
Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ
Genes encoding the five Atlantic halibut (Hippoglossus hippoglossus L.) cytokines; interleukin (IL)-1β, IL-6, IL-11b, IL-12βc, and interferon (IFN) γ, were cloned and characterised at a molecular level. The genomic organisation of the halibut cytokine genes was similar to that seen in mammals and/or other fish species. Several mRNA instability motifs were found within the 3′-untranslated region (UTR) of all cytokine cDNA sequences. The putative cytokine protein sequences showed a low sequence identity with the corresponding homologues in mammals, avian and other fish species. Nevertheless, important structural features were presumably conserved such as the presence, or absence in the case of IL-1β, of a signal peptide, secondary structure and family signature motifs. The relative expression pattern of the cytokine genes was analyzed in several halibut organs, revealing a constitutive expression in both lymphoid and non-lymphoid organs. Interestingly, the gills showed a relatively high expression of IL-1β, IL-12βc and IFNγ. The real time RT-PCR data also showed that the mRNA level of IL-1β, IL-6, IL-12βc and IFNγ was high in the thymus, while IL-11b was relatively highly expressed in the posterior kidney and posterior gut. Moreover, the halibut brain showed a relatively high level of IL-6 transcripts. Anterior kidney leucocytes in vitro stimulated with imiquimod showed a significant increase in mRNA level of the five halibut cytokine genes. The sequence and characterisation data presented here will be useful for further investigation of both innate and adaptive immune responses in halibut, and be helpful in the design of vaccines for the control of various infectious diseases
Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain
Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-beta1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage
Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study
<p>Abstract</p> <p>Background</p> <p>This study intended to investigate whether residence in areas polluted by heavy industry, waste incineration, a high density of traffic and housing or intensive use of pesticides, could contribute to the high incidence of cancer observed in Flanders.</p> <p>Methods</p> <p>Subjects were 1583 residents aged 50–65 from 9 areas with different types of pollution. Cadmium, lead, p,p'-DDE, hexachlorobenzene, PCBs and dioxin-like activity (Calux test) were measured in blood, and cadmium, t,t'-muconic acid and 1-hydroxypyrene in urine. Effect biomarkers were prostate specific antigen, carcinoembryonic antigen and p53 protein serum levels, number of micronuclei per 1000 binucleated peripheral blood cells, DNA damage (comet assay) in peripheral blood cells and 8-hydroxy-deoxyguanosine in urine. Confounding factors were taken into account.</p> <p>Results</p> <p>Overall significant differences between areas were found for carcinoembryonic antigen, micronuclei, 8-hydroxy-deoxyguanosine and DNA damage. Compared to a rural area with mainly fruit production, effect biomarkers were often significantly elevated around waste incinerators, in the cities of Antwerp and Ghent, in industrial areas and also in other rural areas. Within an industrial area DNA strand break levels were almost three times higher close to industrial installations than 5 kilometres upwind of the main industrial installations (p < 0.0001). Positive exposure-effect relationships were found for carcinoembryonic antigen (urinary cadmium, t,t'-muconic acid, 1-hydroxypyrene and blood lead), micronuclei (PCB118), DNA damage (PCB118) and 8-hydroxy-deoxyguanosine (t,t'-muconic acid, 1-hydroxypyrene). Also, we found significant associations between values of PSA above the p90 and higher values of urinary cadmium, between values of p53 above the p90 and higher serum levels of p,p'-DDE, hexachlorobenzene and marker PCBs (PCB 138, 153 and 180) and between serum levels of p,p'-DDE above the p90 and higher serum values of carcinoembryonic antigen. Significant associations were also found between effect biomarkers and occupational or lifestyle parameters.</p> <p>Conclusion</p> <p>Levels of internal exposure, and residence near waste incinerators, in cities, or close to important industries, but not in areas with intensive use of pesticides, showed positive correlations with biomarkers associated with carcinogenesis and thus probably contribute to risk of cancer. In some rural areas, the levels of these biomarkers were not lower than in the rest of Flanders.</p
Maturation-Dependent Licensing of Naive T Cells for Rapid TNF Production
The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs
Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland
- …