32 research outputs found

    Gene expression during preimplantation mouse development

    Get PDF
    To develop a resource for the identification and isolation of genes expressed in the early mammalian embryo, large and representative cDNA libraries were constructed from unfertilized eggs, and two-cell, eight-cell, and blastocyst-stage mouse embryos. Using these libraries, we now report the first stages at which the cytokines interleukin (IL)-6, IL-1 beta, and interferon (IFN)-gamma are transcribed in the developing embryo and the presence of IL-7 transcripts in the unfertilized egg. Transcripts for IL-1 alpha, -2, -3, -4, or -5 were not detected at these stages. To identify novel genes expressed on activation of the embryonic genome, the egg and eight-cell stage-specific cDNA libraries were subtracted from the two-cell library, yielding a specialized cDNA library enriched for transcripts expressed at the two-cell stage. Sequence and Southern blot analysis of several of these cDNAs expressed predominantly at the two-cell stage of embryogenesis revealed them to be from novel genes, thereby providing the first molecular tools with which to approach the study of gene expression in the early mammalian embryo

    Differential Analysis of Ovarian and Endometrial Cancers Identifies a Methylator Phenotype

    Get PDF
    Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples. Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous tumors validated the reproducibility of the methylation patterns. In contrast, >1,000 genes were differentially methylated between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of differences between serous and endometrioid ovarian tumors indicates that intervention strategies could be developed to specifically address subtypes of epithelial ovarian cancer

    Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer (OvCa) most often derives from ovarian surface epithelial (OSE) cells. Several lines of evidence strongly suggest that increased exposure to progesterone (P4) protects women against developing OvCa. However, the underlying mechanisms of this protection are incompletely understood.</p> <p>Methods</p> <p>To determine downstream gene targets of P4, we established short term <it>in vitro </it>cultures of non-neoplastic OSE cells from six subjects, exposed the cells to P4 (10<sup>-6 </sup>M) for five days and performed transcriptional profiling with oligonucleotide microarrays containing over 22,000 transcripts.</p> <p>Results</p> <p>We identified concordant but modest gene expression changes in cholesterol/lipid homeostasis genes in three of six samples (responders), whereas the other three samples (non-responders) showed no expressional response to P4. The most up-regulated gene was <it>TMEM97 </it>which encodes a transmembrane protein of unknown function (MAC30). Analyses of outlier transcripts, whose expression levels changed most significantly upon P4 exposure, uncovered coordinate up-regulation of 14 cholesterol biosynthesis enzymes, insulin-induced gene 1, low density lipoprotein receptor, <it>ABCG1</it>, endothelial lipase, stearoyl- CoA and fatty acid desaturases, long-chain fatty-acyl elongase, and down-regulation of steroidogenic acute regulatory protein and <it>ABCC6</it>. Highly correlated tissue-specific expression patterns of <it>TMEM97 </it>and the cholesterol biosynthesis genes were confirmed by analysis of the GNF Atlas 2 universal gene expression database. Real-time quantitative RT-PCR analyses revealed 2.4-fold suppression of the <it>TMEM97 </it>gene expression in short-term cultures of OvCa relative to the normal OSE cells.</p> <p>Conclusion</p> <p>These findings suggest that a co-regulated transcript network of cholesterol/lipid homeostasis genes and <it>TMEM97 </it>are downstream targets of P4 in normal OSE cells and that <it>TMEM97 </it>plays a role in cholesterol and lipid metabolism. The P4-induced alterations in cholesterol and lipid metabolism in OSE cells might play a role in conferring protection against OvCa.</p

    Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein

    Get PDF
    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy

    Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    Get PDF
    Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathwa

    Gene expression during preimplantation mouse development.

    No full text

    Construction of Primary and Subtracted Cdna Libraries from Early Embryos

    No full text
    By modifying current cDNA cloning and electroporation methods, large and representative murine cDNA libraries were synthesized from 10 to 100 ng mRNA isolated from unfertilized egg and preimplantation mouse embryos. High cloning efficiency is essential for complete representation of genes expressed in egg and preimplantation embryos and for the isolation of stage-specific genes using subtractive hybridization. Because the mouse embryo contains no more than 50 pg of poly(A)+ mRNA at any stage of preimplantation development, approximately 5000-10,000 embryos are required to obtain enough mRNA to synthesize libraries using current methods. To obtain a representative library that also includes rare transcripts, the size of the library should be at least 10(6) clones. The average percent conversion of mRNA to single-stranded cDNA was 20-40%, so that a cloning efficiency of nearly 2 x 10(8) cfu/microgram cDNA is required for such a cDNA library. No previous methods have provided directional cloning of cDNA into plasmids with these high efficiencies. The advent of electroporation methods for the introduction of nucleic acids into bacteria has made possible the use of standard plasmid vectors for high-efficiency cDNA cloning. Plasmid vectors are currently available that can accommodate the directional cloning of cDNA such that T7 and T3 RNA polymerase promoter sequences can be used to generate sense and anti-sense transcripts for subtractive hybridization and riboprobe synthesis. The cDNA libraries we derived using this methodology are a reusable and abundant source of genetic information about the control of preimplantation development. Specialized subtractive cDNA libraries enriched for genes expressed exclusively at a predetermined time in development give access to genes expressed in a stage-specific manner. The ability to construct new cDNA libraries from limited amounts of starting material ensures the provision of new and important resources for the identification and study of novel genes or gene families, and it is an important new tool for understanding the molecular control of mammalian development
    corecore