13 research outputs found

    Draft genome sequences of 25 Listeria monocytogenes isolates associated with human clinical Listeriosis in Ireland

    Get PDF
    Listeria monocytogenes is a Gram-positive opportunistic pathogen that is the causative agent of listeriosis. Here, we report the draft genome sequences of 25 L. monocytogenes strains isolated from patients with clinical listeriosis in the Republic of Ireland between 2013 and 201

    Rapid cross-border emergence of NDM-5-producing Escherichia coli in the European Union/European Economic Area, 2012 to June 2022

    Get PDF
    Whole genome sequencing data of 874 Escherichia coli isolates carrying blaNDM-5 from 13 European Union/ European Economic Area countries between 2012 and June 2022 showed the predominance of sequence types ST167, ST405, ST410, ST361 and ST648, and an increasing frequency of detection. Nearly a third (30.6%) of these isolates were associated with infections and more than half (58.2%) were predicted to be multidrug-resistant. Further spread of E. coli carrying blaNDM-5 would leave limited treatment options for serious E. coli infections

    Completeness and timeliness of salmonella notifications in ireland in 2008: a cross sectional study

    No full text
    Background: In Ireland, salmonellosis is the second most common cause of bacterial gastroenteritis. A new electronic system for reporting (Computerised Infectious Disease Reporting - CIDR) of Salmonella cases was established in 2004. It collates clinical (and/or laboratory) data on confirmed and probable Salmonella cases. The authors studied the completeness and the timeliness of Salmonella notifications in 2008. Methods: This analysis was based upon laboratory confirmed cases of salmonella gastroenteritis. Using data contained in CIDR, we examined completeness for certain non-mandatory fields (country of infection, date of onset of illness, organism, outcome, patient type, and ethnicity). We matched the CIDR data with the dataset provided by the national Salmonella reference laboratory (NSRL) to which all Salmonella spp. isolates are referred for definitive typing. We calculated the main median time intervals in the flow of events of the notification process. Results: In total, 416 laboratory confirmed Salmonella cases were captured by the national surveillance system and the NSRL and were included in the analysis. Completeness of non mandatory fields varied considerably. Organism was the most complete field (98.8%), ethnicity the least (11%). The median time interval between sample collection (first contact of the patient with the healthcare professional) to the first notification to the regional Department of Public Health (either a clinical or a laboratory notification) was 6 days (Interquartile 4-7 days). The median total identification time interval, time between sample collections to availability of serotyping and phage-typing results on the system was 25 days (Interquartile 19-32 days). Timeliness varied with respect to Salmonella species. Clinical notifications occurred more rapidly than laboratory notifications. Conclusions: Further feedback and education should be given to health care professionals to improve completeness of reporting of non-mandatory fields. The efficiency of reporting was similar to that published elsewhere. Delays in the reporting system at present mean that although the system is of value in facilitating comprehensive reporting it is unlikely it can be relied upon for rapid detection of outbreaks at an early stage. Direct person-to-person, communication between clinical and reference laboratories and public health practitioners remains a critical element of the surveillance system for rapid outbreak detection

    Antimicrobial Resistance and Genetic Diversity of Shigella sonnei Isolates from Western Ireland, an Area of Low Incidence of Infection

    No full text
    Shigella sonnei is a significant cause of gastroenteritis in both developing and industrialized countries. Definition of the diversity and antimicrobial susceptibility of S. sonnei isolates may be helpful in the management of individual cases and outbreaks. Antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) were performed with 67 isolates of S. sonnei predominantly (n = 59) from three counties in the west of Ireland. Phage typing (n = 17), plasmid profiling (n = 28), and integron analysis (n = 24) were performed with subsets of strains. PFGE typing permitted recognition of two major clusters: PFGE type A (n = 53) and PFGE type B (n = 14). PFGE type A was associated with resistance to ampicillin, streptomycin, and sulfonamides (51 of 53 isolates), and those that were phage typed (n = 6) were phage type 3. PFGE type B was associated with resistance to streptomycin, sulfonamides, tetracycline, and trimethoprim (11 of 14 isolates) and phage type 6 (9 of 11 isolates). Fifteen different plasmid profiles were identified among the 28 isolates analyzed. A class 2 integron was present in all 14 PFGE type B isolates. One of these isolates also contained a class 1 integron and showed a unique variant of the PFGE type B pattern. Sequence analysis of the gene cassette structures contained within these integrons identified distinct open reading frames that encoded determinants of resistance to trimethoprim, streptomycin, and streptothricin. Our data demonstrate two predominant PFGE types among S. sonnei isolates circulating in this region. The limited diversity of the S. sonnei isolates in this region means that detection of isolates indistinguishable by PFGE and according to their antibiograms in two or more patients is not persuasive evidence of a common-source food- or waterborne outbreak. Indistinguishable plasmid profiles in addition to indistinguishable PFGE and antibiogram types may be more suggestive of an epidemiologically relevant link between cases

    Cost-Effective Application of Pulsed-Field Gel Electrophoresis to Typing of Salmonella enterica Serovar Typhimurium

    No full text
    Salmonella enterica serovar Typhimurium is frequently isolated from humans and animals. Phage typing is historically the first-line reference typing technique in Europe. It is rapid and convenient for laboratories with appropriate training and experience, and costs of consumables are low. Phage typing and pulsed-field gel electrophoresis (PFGE) were performed on 503 isolates of serovar Typhimurium. Twenty-nine phage types and 53 PFGE patterns were observed. Most isolates of phage types DT104, DT104b, and U310 are not distinguishable from other members of their phage type by PFGE. By contrast, PFGE of isolates of phage types DT193 and U302 shows great heterogeneity. Analysis of experience with PFGE and phage typing can facilitate the selective application of PFGE to maximize the yield of epidemiologically relevant additional information while controlling costs

    Comparison of Listeria monocytogenes Isolates across the Island of Ireland

    No full text
    Building a comprehensive knowledge base of the association of Listeria monocytogenes isolates across national food chains, clinical cases, and environments can play a key role in helping control the incidence of listeriosis. Today, many food chains cross national borders and are often shared by neighboring countries. This study characterized L. monocytogenes isolated from food samples in Northern Ireland and investigated whether similarities in the population and associations of L. monocytogenes strains exist in the neighboring countries of Northern Ireland and the Republic of Ireland, which together constitute the island of Ireland. Listeria monocytogenes isolates were characterized using serotyping and pulsed-field gel electrophoresis subtyping. This data was then interrogated against existing data for the Republic of Ireland, to identify any shared trends in the ecology and contamination patterns of L. monocytogenes strains. The results of this study indicated that contaminated food products often shared L. monocytogenes strains with other products. A total of six different strain subtypes were identified among 18 contaminated products. Overall strain diversity in positive samples was low, with no sample yielding more than one L. monocytogenes strain, as determined by pulsed-field gel electrophoresis subtyping. When comparisons against an Irish strain database were performed, many related strain subtypes were also shared by a variety of sources in the Republic of Ireland. This study highlights the potential benefits that a whole-island surveillance approach may present to food safety and public health in both Northern Ireland and the Republic of Ireland

    Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland

    Get PDF
    Listeria monocytogenes is a major human foodborne pathogen that is prevalent in the natural environment and has a high case fatality rate. Whole genome sequencing (WGS) analysis has emerged as a valuable methodology for the classification of L. monocytogenes isolates and the identification of virulence islands that may influence infectivity. In this study, WGS was used to provide an insight into 25 L. monocytogenes isolates from cases of clinical infection in Ireland between 2013 and 2015. Clinical strains were either lineage I (14 isolates) or lineage II (11 isolates), with 12 clonal complexes (CC) represented, of which CC1 (6) and CC101 (4) were the most common. Single nucleotide polymorphism (SNP) analysis demonstrated that clinical isolates from mother–infant pairs (one isolate from the mother and one from the infant) were highly related (3 SNP differences in each) and also identified close similarities between isolates from otherwise distinct cases (1 SNP difference). Clinical strains were positive for common virulence-associated loci and 13 isolates harbour the LIPI-3 locus. Pulsed-field gel electrophoresis (PFGE) was used to compare strains to a database of 1300 Irish food and food processing environment isolates and determined that 64% of clinical pulsotypes were previously encountered in the food or food processing environment. Five of the matching food and food processing environment isolates were sequenced and results demonstrated a correlation between pulsotype and genotype. Overall, the work provides insights into the nature of L. monocytogenes strains currently causing clinical disease in Ireland and indicates that similar isolates can be found in the food or food processing environment

    A longitudinal survey of antibiotic-resistant enterobacterales in the Irish environment, 2019–2020

    Get PDF
    The natural environment represents a complex reservoir of antibiotic-resistant bacteria as a consequence of different wastewater discharges including anthropogenic and agricultural. Therefore, the aim of this study was to examine sewage and waters across Ireland for the presence of antibiotic-resistant Enterobacterales. Samples were collected from the West, East and South of Ireland. Two periods of sampling took place between July 2019 and November 2020, during which 118 water (30 L) and 36 sewage samples (200 mL) were collected. Waters were filtered using the CapE method, followed by enrichment and culturing. Sewage samples were directly cultured on selective agars. Isolates were identified by MALDI-TOF and antibiotic susceptibility testing was performed in accordance with EUCAST criteria. Selected isolates were examined for blaCTX-M, blaVIM, blaIMP, blaOXA-48, blaNDM, and blaKPC by real time PCR and whole genome sequencing (n = 146). A total of 419 Enterobacterales (348 water, 71 sewage) were isolated from all samples. Hospital sewage isolates displayed the highest percentage resistance to many beta-lactam and aminoglycoside antibiotics. Extended-spectrum beta-lactamase-producers were identified in 78% of water and 50% of sewage samples. One or more carbapenemase-producing Enterobacterales were identified at 23 individual sampling sites (18 water, 5 sewage). This included the detection of blaOXA-48 (n = 18), blaNDM (n = 14), blaKPC (n = 4) and blaOXA-484 (n = 1). All NDM-producing isolates harbored the ble-MBL bleomycin resistance gene. Commonly detected sequence types included Klebsiella ST323, ST17, and ST405 as well as E. coli ST131, ST38 and ST10. Core genome MLST comparisons detected identical E. coli isolates from wastewater treatment plant (WWTP) influent and nursing home sewage, and the surrounding waters. Similarly, one Klebsiella pneumoniae isolated from WWTP influent and the surrounding estuarine water were identical. These results highlight the need for regular monitoring of the aquatic environment for the presence of antibiotic-resistant organisms to adequately inform public health policies.This project is jointly funded by the Environmental Protection Agency, under the EPA Research Programme 2014–2020, and the Health Service Executive (2017-HW-LS-1). The EPA Research Programme is a Government of Ireland initiative funded by the Department of Communications, Climate Action and Environment. It is administered by the Environmental Protection Agency, which has the statutory function of co-ordinating and promoting environmental research. A portion of this work was also financially supported by the MedVetKlebs project, a component of the European Joint Programme One Health EJP, which has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 773830.peer-reviewe
    corecore