1,610 research outputs found
RF and IF mixer optimum matching impedances extracted by large-signal vectorial measurements
This paper introduces a new technique that allows us to measure the admittance conversion matrix of a two-port device,using a Nonlinear Vector Network Analyzer.This method is applied to extract the conversion matrix of a 0.2 µµµµm pHEMT,driven by a 4.8 GHz pump signal,at different power levels,using an intermediate frequency of 600 MHz.The issue on data inconsistency due to phase randomization among different measurements is discussed and a proper pre- processing algorithm is proposed to fix the problem. The output of this work consists of a comprehensive experimental evaluation of up-and down-conversion maximum gain,stability,and optimal RF and IF impedances
Minority Becomes Majority in Social Networks
It is often observed that agents tend to imitate the behavior of their
neighbors in a social network. This imitating behavior might lead to the
strategic decision of adopting a public behavior that differs from what the
agent believes is the right one and this can subvert the behavior of the
population as a whole.
In this paper, we consider the case in which agents express preferences over
two alternatives and model social pressure with the majority dynamics: at each
step an agent is selected and its preference is replaced by the majority of the
preferences of her neighbors. In case of a tie, the agent does not change her
current preference. A profile of the agents' preferences is stable if the
preference of each agent coincides with the preference of at least half of the
neighbors (thus, the system is in equilibrium).
We ask whether there are network topologies that are robust to social
pressure. That is, we ask if there are graphs in which the majority of
preferences in an initial profile always coincides with the majority of the
preference in all stable profiles reachable from that profile. We completely
characterize the graphs with this robustness property by showing that this is
possible only if the graph has no edge or is a clique or very close to a
clique. In other words, except for this handful of graphs, every graph admits
at least one initial profile of preferences in which the majority dynamics can
subvert the initial majority. We also show that deciding whether a graph admits
a minority that becomes majority is NP-hard when the minority size is at most
1/4-th of the social network size.Comment: To appear in WINE 201
A systematic study of non-ideal contacts in integer quantum Hall systems
In the present article we investigate the influence of the contact region on
the distribution of the chemical potential in integer quantum Hall samples, as
well as the longitudinal and Hall resistance as a function of the magnetic
field. First we use a standard quantum Hall sample geometry and analyse the
influence of the length of the leads where current enters/leaves the sample and
the ratio of the contact width to the width of these leads. Furthermore we
investigate potential barriers in the current injecting leads and the
measurement arms in order to simulate non-ideal contacts. Second we simulate
nonlocal quantum Hall samples with applied gating voltage at the metallic
contacts. For such samples it has been found experimentally that both the
longitudinal and Hall resistance as a function of the magnetic field can change
significantly. Using the nonequilibrium network model we are able to reproduce
most qualitative features of the experiments.Comment: 29 pages, 16 Figure
Preliminary Results of Solid Gas Generator Micropropulsion
A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Paleoclimate reconstructions have identified a period of exceptional summer and winter cooling in the North Atlantic region following the eruption of the tropical volcano Huaynaputina (Peru) in 1600 CE. A previous study based on numerical climate simulations has indicated a potential mechanism for the persistent cooling in a slowdown of the North Atlantic subpolar gyre (SPG) and consequent ocean-atmosphere feedbacks. To examine whether this mechanism could have been triggered by the Huaynaputina eruption, this study compares the simulations used in the previous study both with and without volcanic forcing and this SPG shift to reconstructions from annual proxies in natural archives and historical written records as well as contemporary historical observations of relevant climate and environmental conditions. These reconstructions and observations demonstrate patterns of cooling and sea-ice expansion consistent with, but not indicative of, an eruption trigger for the proposed SPG slowdown mechanism. The results point to possible improvements in future model-data comparison studies utilizing historical written records. Moreover, we consider historical societal impacts and adaptations associated with the reconstructed climatic and environmental anomalies
CUBIC SPLINES FOR ESTIMATING LACTATION CURVES AND GENETIC PARAMETERS OF FIRST LACTATION HOLSTEIN COWS TREATED WITH BOVINE SOMATOTROPIN
The objective was to estimate genetic parameters and fit lactation curves for cows treated or not treated with bovine somatotropin (bST) and fit specific lactation curves for each animal for both random genetic and permanent environmental components from individual test-day milk, fat, and protein yields with a cubic spline model. A total of 70,752 test-day observations for first lactation Holstein cows recorded as treated bST and 73,387 test-day observations for untreated cows that calved between 1994 and early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Carolina. The model included herd test-day, age at first calving, bST treatment, and days in lactation when test-day yield was recorded as fixed effects. Cubic splines were fitted for the overall lactation curve, additive genetic effects, and permanent environmental effects. The cubic splines used five predetermined intervals between days 0, 50, 135,220, and 305. Estimates of the (co)variances for the random components of cubic spline model with five knots were obtained with REML. Estimates of genetic parameters were calculated for the average test day model within each of the ten 30-d test day intervals. The estimates of heritability for milk, fat, and protein yields ranged from 0.09 to 0.15, 0.06 to 0.10, and 0.08 to 0.15 for test-day one to test-day ten. Estimates of genetic correlations between testdays ranged from 0.99 to 0.34 for milk yield, 0.99 to 0.49 for fat yield, and 0.99 to 0.36 for protein yield. Estimates of phenotypic correlations between test-days ranged from 0.67 to 0.27 for milk yield, 0.52 to 0.16 for fat yield, and 0.60 to 0.19 for protein yield. Differences between bST treated and untreated cows of 2 to 4 kg and 0.10 to 0.16 kg for milk and fat yields (smaller for protein yield) at day 90 were maintained until about day 305 of lactation
A non-autonomous stochastic discrete time system with uniform disturbances
The main objective of this article is to present Bayesian optimal control
over a class of non-autonomous linear stochastic discrete time systems with
disturbances belonging to a family of the one parameter uniform distributions.
It is proved that the Bayes control for the Pareto priors is the solution of a
linear system of algebraic equations. For the case that this linear system is
singular, we apply optimization techniques to gain the Bayesian optimal
control. These results are extended to generalized linear stochastic systems of
difference equations and provide the Bayesian optimal control for the case
where the coefficients of these type of systems are non-square matrices. The
paper extends the results of the authors developed for system with disturbances
belonging to the exponential family
Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals
Predictions of observable properties by density-functional theory
calculations (DFT) are used increasingly often in experimental condensed-matter
physics and materials engineering as data. These predictions are used to
analyze recent measurements, or to plan future experiments. Increasingly more
experimental scientists in these fields therefore face the natural question:
what is the expected error for such an ab initio prediction? Information and
experience about this question is scattered over two decades of literature. The
present review aims to summarize and quantify this implicit knowledge. This
leads to a practical protocol that allows any scientist - experimental or
theoretical - to determine justifiable error estimates for many basic property
predictions, without having to perform additional DFT calculations. A central
role is played by a large and diverse test set of crystalline solids,
containing all ground-state elemental crystals (except most lanthanides). For
several properties of each crystal, the difference between DFT results and
experimental values is assessed. We discuss trends in these deviations and
review explanations suggested in the literature. A prerequisite for such an
error analysis is that different implementations of the same first-principles
formalism provide the same predictions. Therefore, the reproducibility of
predictions across several mainstream methods and codes is discussed too. A
quality factor Delta expresses the spread in predictions from two distinct DFT
implementations by a single number. To compare the PAW method to the highly
accurate APW+lo approach, a code assessment of VASP and GPAW with respect to
WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These
differences are an order of magnitude smaller than the typical difference with
experiment, and therefore predictions by APW+lo and PAW are for practical
purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains
updated supplementary material
Minimum Decision Cost for Quantum Ensembles
For a given ensemble of independent and identically prepared particles,
we calculate the binary decision costs of different strategies for measurement
of polarised spin 1/2 particles. The result proves that, for any given values
of the prior probabilities and any number of constituent particles, the cost
for a combined measurement is always less than or equal to that for any
combination of separate measurements upon sub-ensembles. The Bayes cost, which
is that associated with the optimal strategy (i.e., a combined measurement) is
obtained in a simple closed form.Comment: 11 pages, uses RevTe
- …