319 research outputs found

    Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply

    Get PDF
    The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results

    Gating of L-type Ca2+ channels in embryonic chick ventricle cells: dependence on voltage, current and channel density

    Get PDF
    1. L-type calcium channels in embryonic chick heart ventricle have voltage-dependent, time-variant kinetics when they conduct inward currents carried by 20 mM-Ba2+. Depolarizing the membrane from -20 to 20 mV increases mean open time from 1.4 to 4.2 ms. Mean open time increases monotonically with voltage. The single-channel conductance, 18 +/- 2 pS, is approximately linear over this voltage range, and the extrapolated reversal potential is 38 +/- 5 mV. 2. In cell-attached patches with five or more L-type Ca2+ channels in the patch, the currents elicited by 500 ms depolarizing steps, from a -80 mV holding potential, inactivate rapidly and have large tail currents. In the same patch, currents from a -40 mV holding potential are smaller, inactivate more slowly, and have practically no tail currents. 3. In cell-attached patches containing one of two L-type Ca2+ channels, currents from -80 or -40 mV are virtually identical, and they are similar to the currents from multichannel patches held at -40 mV. 4. The voltage-dependent, time-variant kinetics of individual L-type Ca2+ channels are unaltered if the patch is removed from the cell and forms an inside-out configuration. In these experiments the internal membrane was bathed with an artificial, intracellular-like solution containing no phosphorylating enzymes or substrates. 5. Cells bathed in 20 mM-Ba2+ solutions and held at -80 mV have currents with an early phase that inactivates in tens of milliseconds, a late phase that inactivates in hundreds of milliseconds, and a large, slow tail current. Currents from -40 mV have only the late phase and practically no tails. However, if the maximum current is less than 0.1 pA pF-1, records from either -80 or -40 mV are virtually identical, and they are similar to currents from cells with higher channel density held at -40 mV. Furthermore, if cells are stimulated before full recovery from inactivation, the reduced current is accompanied by slower inactivation. 6. Whole-cell currents in 1.5 mM-Ca2+ solutions are entirely abolished by addition of 20 microM-nifedipine, and they are enhanced 2-3 times by addition of 30 microM-cyclic AMP and 3 mM-ATP to the whole-cell recording electrode. The whole-cell currents in 20 mM-Ba2+ solutions are also completely blocked by 20 microM-nifedipine, regardless of kinetics or holding potential. Thus, by definition, the cells we are studying contain only L-type channels

    Cover crops management for no-till grain crop production

    Get PDF
    "Cover crops are forage grasses, legumes, small grains or other crops grown to protect and improve the soil. Cover crops are becoming increasingly important in Missouri, because soil losses of 10. 9 tons of cropland per acre are occurring annually through sheet and rill erosion. About 20 cents worth of nutrients is lost in each ton of soil, which means a loss of over 2peracreperyear.Inadditiontosoillossfromerosion,Missouriislosingnutrientsequivalenttoover2 per acre per year. In addition to soil loss from erosion, Missouri is losing nutrients equivalent to over 25 million in fertilizer each year."--First page.Z.R. Helsel, M. DeFelice, D. Buchholz (Department of Agronomy College of Agriculture)New 11/86/8

    Geographic variation in polyandry of the Eastern Honey Bee, Apis cerana, in Thailand

    Get PDF
    The repeated evolution of extreme polyandry in advanced social insects is exceptional and its explanation has attracted significant attention. However, most reported estimates of the number of matings are derived from limited sampling. Temporal and geographic variation in mating behavior of social insects has not been sufficiently studied. Worker offspring of 18 Eastern Honey Bee (Apis cerana Fabr.) queens from three populations across Thailand were genotyped at five microsatellite markers to test for population differences of mating behavior across three different ecosystems. The number of matings decreased from a northern, more seasonal environment to a southern tropical population and was lowest in a tropical island population. Our study confirms earlier findings that social insect mating behavior shows biogeographic variation and highlights that data from several populations are needed for reliable species-specific estimates of the number of matings. Detailed studies of populations that show significant differentiation in the number of matings may be able to discriminate effectively among the different hypotheses that have been proposed to explain the evolution of polyandry in honey bees and other advanced social insects

    Noise suppression by noise

    Get PDF
    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.Comment: 4 pages, 4 figure

    Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model

    Full text link
    The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of the membrane patch for which the internal noise alone causes a regular spontaneous generation of action potentials. In addition to varying the size of ion channel clusters, living organisms may adapt the densities of ion channels in order to optimally regulate the spontaneous spiking activity. The influence of channel block on the excitability of a membrane patch of certain size is twofold: First, a variation of ion channel densities primarily yields a change of the conductance level. Second, a down-regulation of working ion channels always increases the channel noise. While the former effect dominates in the case of sodium channel block resulting in a reduced spiking activity, the latter enhances the generation of spontaneous action potentials in the case of a tailored potassium channel blocking. Moreover, by blocking some portion of either potassium or sodium ion channels, it is possible to either increase or to decrease the regularity of the spike train.Comment: 10 pages, 3 figures, published 200

    Exploring Pompeii: discovering hospitality through research synergy

    Get PDF
    Hospitality research continues to broaden through an ever-increasing dialogue and alignment with a greater number of academic disciplines. This paper demonstrates how an enhanced understanding of hospitality can be achieved through synergy between archaeology, the classics and sociology. It focuses on classical Roman life, in particular Pompeii, to illustrate the potential for research synergy and collaboration, to advance the debate on hospitality research and to encourage divergence in research approaches. It demonstrates evidence of commercial hospitality activities through the excavation hotels, bars and taverns, restaurants and fast food sites. The paper also provides an example of the benefits to be gained from multidisciplinary analysis of hospitality and tourism

    Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    Get PDF
    This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment
    corecore