16 research outputs found
Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 Multiple Osteochondromas families
<p>Abstract</p> <p>Background</p> <p>Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in <it>EXT1 </it>or <it>EXT2</it>, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.</p> <p>Methods</p> <p>Here we report on the first molecular characterization of ten large <it>EXT1</it>- and <it>EXT2</it>-deletions in MO-patients. Deletions were initially indentified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.</p> <p>Results</p> <p>Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One <it>EXT2 </it>exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of <it>EXT1 </it>and <it>EXT2</it>. Non-allelic homologous recombination (NAHR) mediated by <it>Alu</it>-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.</p> <p>Conclusions</p> <p>Molecular characterization of <it>EXT1</it>- and <it>EXT2</it>-deletion breakpoints in MO-patients indicates that NAHR between <it>Alu-</it>sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in <it>EXT1 </it>and <it>EXT2</it>.</p
Intronic Alus Influence Alternative Splicing
Examination of the human transcriptome reveals higher levels of RNA editing
than in any other organism tested to date. This is indicative of extensive
double-stranded RNA (dsRNA) formation within the human transcriptome. Most of
the editing sites are located in the primate-specific retrotransposed element
called Alu. A large fraction of Alus are found in intronic sequences, implying
extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these
intronic Alus on splicing of the flanking exons is largely unknown. Here, we
show that more Alus flank alternatively spliced exons than constitutively
spliced ones; this is especially notable for those exons that have changed
their mode of splicing from constitutive to alternative during human evolution.
This implies that Alu insertions may change the mode of splicing of the
flanking exons. Indeed, we demonstrate experimentally that two Alu elements
that were inserted into an intron in opposite orientation undergo base-pairing,
as evident by RNA editing, and affect the splicing patterns of a downstream
exon, shifting it from constitutive to alternative. Our results indicate the
importance of intronic Alus in influencing the splicing of flanking exons,
further emphasizing the role of Alus in shaping of the human transcriptom
Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression
Post-transcriptional regulation of HIV-1 gene expression is mediated by interactions between viral transcripts and viral/cellular proteins. For HIV-1, post-transcriptional nuclear control allows for the export of intron-containing RNAs which are normally retained in the nucleus. Specific signals on the viral RNAs, such as instability sequences (INS) and Rev responsive element (RRE), are binding sites for viral and cellular factors that serve to regulate RNA-export. The HIV-1 encoded viral Rev protein binds to the RRE found on unspliced and incompletely spliced viral RNAs. Binding by Rev directs the export of these RNAs from the nucleus to the cytoplasm. Previously, Rev co-factors have been found to include cellular factors such as CRM1, DDX3, PIMT and others. In this work, the nuclear matrix protein Matrin 3 is shown to bind Rev/RRE-containing viral RNA. This binding interaction stabilizes unspliced and partially spliced HIV-1 transcripts leading to increased cytoplasmic expression of these viral RNAs
Evidence for a genomic mechanism of action for progesterone receptor membrane component-1
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in the granulosa and luteal cells of rodent and primate ovaries. Interestingly, its molecular weight as assessed by Western blot is dependent on its cellular localization with a 4827 kDa form being detected in the cytoplasm and higher molecular weight forms being detected in the nucleus. The higher molecular weight forms of PGRMC1 are sumoylated suggesting that they are involved in regulating gene transcription, since sumoylation of nuclear proteins often is associated with regulation of transcriptional activity of the sumoylated protein. In order to identify a set of candidate genes that are regulated by PGRMC1, a human granulosa/luteal cell line (hGL5 cells) was treated with PGRMC1 siRNA and changes in gene expression monitored by microarray analysis. The microarray analysis revealed that PGRMC1 generally functioned as a repressor of transcription, since depletion of PGRMC1 resulted in a disproportionate increase in the number of transcripts. Moreover, a pathway analysis implicated PGRMC1 in the regulation of apoptosis, which is consistent with PGRMC1's known biological action. More importantly these results support the concept that PGRMC1 influences gene transcription. Additional studies reveal that progesterone (P4) acting through a PGRMC1-dependent mechanism suppresses the activity of the transcription factor, Tcf/Lef, thereby identifying one molecular pathway through which P4-PGRMC1 can regulate gene transcription and ultimately apoptosis
High heat flux laser testing of HfB2 cylinders
Hafnium diboride (HfB2) is one of a family of ultra-high temperature ceramics (UHTCs) which are being considered for application in environments with a substantial heat flux such as hypersonic flight. In order to characterize transitions in the material response with heat flux and therefore predict the inservice behavior of UHTCs, a range of tests were conducted in which small cylindrical bars of HfB2 were laser heated using heat fluxes from 25 to 100 MW/m2. After testing, the external damage as well as damage observable in cross sections through the cylinders was characterized using photography, optical, and scanning electron microscopy. Experimental results were compared with finite element modeling of the heat flow, temperature distribution, and phase transition. Heat flux rather than total deposited heat was found to be the strongest determinant of the way in which damage develops in samples; for lower heat fluxes, the main damage mechanism is oxidation, progressing to oxidation-induced melting and finally, at the highest heat fluxes, substantial ablation by melting irrespective of oxidation. The agreement between calculations and experimental observations indicates that such calculations can be used with confidence to guide the design of components
Alu element-mediated gene silencing
The Alu elements are conserved ∼300-nucleotide-long repeat sequences that belong to the SINE family of retrotransposons found abundantly in primate genomes. Pairs of inverted Alu repeats in RNA can form duplex structures that lead to hyperediting by the ADAR enzymes, and at least 333 human genes contain such repeats in their 3′-UTRs. Here, we show that a pair of inverted Alus placed within the 3′-UTR of egfp reporter mRNA strongly represses EGFP expression, whereas a single Alu has little or no effect. Importantly, the observed silencing correlates with A-to-I RNA editing, nuclear retention of the mRNA and its association with the protein p54nrb. Further, we show that inverted Alu elements can act in a similar fashion in their natural chromosomal context to silence the adjoining gene. For example, the Nicolin 1 gene expresses multiple mRNA isoforms differing in the 3′-UTR. One isoform that contains the inverted repeat is retained in the nucleus, whereas another lacking these sequences is exported to the cytoplasm. Taken together, these results support a novel role for Alu elements in human gene regulation